Evaluation of capabilities of different global sensitivity analysis techniques for building energy simulation: experiment on design variables
Keywords:
building simulation, sensitivity analysis, Morris method, Monte Carlo, Sobol, Design of ExperimentsAbstract
The objective of this study is to investigate the capabilities of different global sensitivity analysis methods applied to building performance simulation, i.e. Morris, Monte Carlo, Design of Experiments, and Sobol methods. A single-zone commercial building located in Florianópolis, southern Brazil, was used as a case study. Fifteen inputs related to design variables were considered, such as thermal properties of the construction envelope, solar orientation, and fenestration characteristics. The performance measures were the annual heating and cooling loads. It was found that each method can provide different visual capabilities and measures of interpretation, but, in general, there was little difference in showing the most influent and least influent variables. For the heating loads, the thermal transmittances were the most influent variables, while for the cooling loads, the solar absorptances stood out. The Morris method showed to be the most feasible method due to its simplicity and low computational cost. However, as the building simulation model is still complex and non-linear, the variance-based method such as the Sobol is still necessary for general purposes.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in Ambiente Construído agree to the terms:
- The authors grant the Journal the right to publish under the Creative Commons Attribution License (CC BY 4.0), allowing access, printing, reading, distribution, adaptation, and development of other research, if the authorship is recognized.
- Authors are authorized to distribute the work published in the Journal, such as institutional repositories, or to include their article as part of the thesis and/or dissertation, as long as they mention the publication reference in Ambiente Construído.
- Anyone can read, distribute, print, download, and indicate the address of the complete article without prior authorization from the Journal respecting the CC BY 4.0 license.
Creative Commons Attribution License
ISSN 1678-8621