Potential and limits of data processing in research on scientific production
DOI:
https://doi.org/10.22456/1982-8918.120556Keywords:
Electronic Data Processing, Information Storage and Retrieval, BibliometricsAbstract
This paper deals with potentials and limits related to the use of data processing to assist in the production and systematization of scientific knowledge. It aims to discuss the feasibility of using automated collection techniques for surveying and producing data that can be used in scientific research. As a demonstration, it seeks to automatically reproduce processes related to the collection of research data previously published in this journal, describing methodologically how the extraction and treatment of these data was organized and developed. As a result, it finds that automated processing can be a productive and efficient alternative to assist in the systematization and analysis of the growing accumulation of publications in the scientific field, which may open new methodological paths for research in Physical Education, especially considering the volume of data subject to collection and analysis on social networks, forums and other web platforms.
Downloads
References
CASTIEL, Luis David; SANZ-VALERO, Javier. Entre fetichismo e sobrevivência: o artigo científico é uma mercadoria acadêmica? Cadernos de Saúde Pública, v. 23, n. 12, 2007.
DIAS, Cleber et al. Estudos do lazer no Brasil em princípios do século XXI: panorama e perspectivas. Movimento, v. 23, n. 2., p. 601-616, abr./jun. de 2017.
DOURADO, Tatiana Maria Silva Galvão. Fake news na eleição presidencial de 2018 no Brasil. Tese (Doutorado em Comunicação e Cultura Contemporâneas) - Universidade Federal da Bahia, 2020.
HADDAWAY, Neal R. The use of web-scraping software in searching for grey literature. Grey Journal, v. 11, n. 3, p. 186-90, 2015.
INTERNET LIVE STATS. [Elaboration of data by International Telecommunication Union (ITU), World Bank, and United Nations Population Division]. Disponível em: https://www.internetlivestats.com/. Acesso em: 27 nov. 2021.
LIMA, José Leonardo Oliveira; ALVARES, Lilian. Organização e representação da informação e do conhecimento. In: ALVARES, Lilian. (org.). Organização da informação e do conhecimento: conceitos, subsídios interdisciplinares e aplicações. São Paulo: B4 Editores, 2012. 248 p. cap. 1, p. 21-48.
NASCIMENTO, Dandara Souza Araújo et al. Projeções exponenciais da ciência brasileira: modelos e análises quantitativas da produção científica nacional publicada nos últimos 30 anos. Informação & Informação, v. 26, n. 1, p. 53 – 73, jan./mar. 2021.
PIMENTA. Ricardo Medeiros. Nosso futuro em um post. cultura da velocidade, big data e a novo desafio dos “peixes” para os historiadores da era digital. Revista Transversos: Revista de História, n. 11, p. 9-22, dez. 2017. Disponível em: https://www.e-publicacoes.uerj.br/index.php/transversos/article/view/31510/22479.
R CORE TEAM. The R project for statistical computing. Disponível em: https://www.R-project.org/ Acesso em: 15 nov. 2021.
SETZER, Valdemar Waingort. Os meios eletrônicos e a educação: uma visão alternativa. São Paulo: Editora Escrituras, 2001. (Coleção Ensaios Transversais, v. 10).
VAN DER LOO, Mark. The stringdist package for approximate string matching. R Journal, v. 6, n. 1. p. 111-122, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Movimento (Porto Alegre)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Movimento adopts the Creative Commons Attribution 4.0 International (CC BY 4.0) for approved and published works. This means that authors:
- keep their copyrights and grant right of first publication to the journal; and
- as long as the authors’ names and Movimento’s initial publication rights are acknowledged, the authors may share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially).
