Análise de Aprendizagem em MOOCs de Ensino de Programação:
um Mapeamento Sistemático da Literatura
DOI:
https://doi.org/10.22491/1982-1654.139863Palabras clave:
Análise de aprendizagem, MOOC, Ensino de Programação, Intervenções educacionaisResumen
A expansão dos MOOCs e a crescente demanda por habilidades de programação sublinham a necessidade de métodos eficazes de ensino e aprendizagem. Neste contexto, a análise de aprendizagem (LA) se destaca como uma ferramenta crucial para otimizar a educação em programação. Este artigo apresenta um mapeamento sistemático da literatura, cobrindo estudos de 2011 a 2022, para explorar o uso da LA em MOOCs de programação. Revelou-se uma predominância de técnicas de aprendizado de máquina e mineração de dados, utilizadas principalmente para prever desempenho e identificar riscos de desistência. Contudo, apesar da ampla utilização dessas ferramentas por educadores, nota-se uma falta de recursos analíticos acessíveis diretamente aos alunos. O estudo enfatiza a necessidade de tornar essas ferramentas disponíveis aos alunos para promover uma aprendizagem mais autônoma e engajada, sugerindo mais pesquisas sobre intervenções proativas para melhorar os resultados educacionais em programação.
Descargas
Citas
Cobos, R., & Ruiz-Garcia, J. C. (2020). Improving learner engagement in MOOCs using a learning intervention system: A research study in engineering education. Computer Applications in Engineering Education, 29(4).
Drummond, A., et al. (2014). Learning to Grade Student Programs in a Massive Open Online Course. In IEEE International Conference on Data Mining, 785-790.
Ferguson, R. (Year). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.
Furukawa, M., et al. (2020). Estimation of Test Scores Based on Video Viewing Behavior in the Programming MOOC Course. In International Congress on Advanced Applied Informatics (IIAI-AAI), 155-162.
Gallego-Romero, J. M., et al. (2020). Analyzing learners’ engagement and behavior in MOOCs on programming with the Codeboard IDE. Educational Technology Research and Development, 68(1), 2505-2528.
García-Molina, S., et al. (2020). An Algorithm and a Tool for the Automatic Grading of MOOC Learners from Their Contributions in the Discussion Forum. Applied Sciences, 11(1).
Gold, R., Hemberg, E., & O’Reilly, U.-M. (2020). Analyzing K-12 Blended MOOC Learning Behaviors. In ACM Conference on Learning @ Scale (L@S), 7, 345-348.
Hemberg, E., et al. (2019). Categorizing Resources and Learners for a Finer-Grained Analysis of MOOC Viewing & Doing. In IEEE Learning with MOOCs (LWMOOCS), 116-121.
Humble, N., & Mozelius, P. (2019). Learning Analytics for Programming Education: Obstacles and Opportunities. In International Conference of Education, Research, and Innovation, 6159-6166.
Johnson, D., Smith, S., & Wang, L. (2020). Challenges and Opportunities in Online Learning: MOOCs and the Role of Computational Thinking. Journal of Educational Technology & Society, 23(3), 135-149.
Kitchenham, B. A., & Charters, S. M. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering Version 2.3: Technical Report. Keele University and University of Durham.
Mansur, D. R., & Altoé, R. O. (2021). Ferramenta Tecnológica para Realização de Revisão de Literatura em Pesquisas Científicas. Revista Eletrônica Sala de Aula em Foco, 10(1), 8-28.
Moreno-Marcos, P. M., et al. (2018). Analyzing the predictive power for anticipating assignment grades in a massive open online course. Behaviour & Information Technology, 37, 1021-1036.
Oliveira, M. G. de. (2021). MOOCs and the Future of IT Education. Journal of Information Technology Education: Research, 20, 159-178.
Oliveira, M. G., et al. (2018). O Moodle de Lovelace: Um Curso a Distância de Python Essencial, Ativo e Prático para Formação de Programadoras. In Women in Information Technology (WIT). Anais... SBC.
Onah, D., et al. (2019). Learning Analytics for Motivating Self‐regulated Learning and Fostering the Improvement of Digital MOOC Resources. Advances in Intelligent Systems and Computing, 909.
Park, Y., & Jo, I-H. (2019). Factors that affect the success of learning analytics dashboards. Education Tech Research Dev, 67, 1547-1571.
Qu, S., et al. (2019). Predicting Student Achievement Based on Temporal Learning Behavior in MOOCs. Applied Sciences, 9(24).
Qu, S., et al. (2019). Predicting Student Performance and Deficiency in Mastering Knowledge Points in MOOCs Using Multi-Task Learning. Entropy, 21(12).
Rienties, B., et al. (2018). Making sense of learning analytics dashboards: A technology acceptance perspective of 95 teachers. The International Review of Research in Open and Distributed Learning, 19(5).
Shen, H., et al. (2020). Understanding Learner Behavior Through Learning Design Informed Learning Analytics. In ACM Conference on Learning @ Scale (L@S), 7, 135-145.
Shrestha, S., & Pokharel, M. (2019). Machine Learning algorithm in educational data. In Artificial Intelligence for Transforming Business and Society (AITB).
Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400.
Smith, J. A. (2019). Educational Outcomes of Learning through MOOCs in Programming: What Do We Know? Journal of Computer Assisted Learning, 35(1), 89-103.
Verbert, K., et al. (2013). Learning Analytics Dashboard Applications. American Behavioral Scientist, 57(10), 1500-1509.
Vinker, E., & Rubinstein, A. (2022). Mining Code Submissions to Elucidate Disengagement in a Computer Science MOOC. In International Learning Analytics and Knowledge Conference (LAK), ACM, 142–151.
Yee-King, M., Grimalt-Reynes, A., & D'inverno, M. (2016). Predicting student grades from online, collaborative social learning metrics using K-NN. In International Conference on Educational Data Mining, 654-655.
Zhong, S. H., et al. (2017). A computational investigation of learning behaviors in MOOCs. Computer Applications in Engineering Education, 25(5), 693-705.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Os direitos autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. Os textos podem ser compartilhados desde que respeitados os direitos autorais sob a licença Creative Commons Não comercial-CompartilhaIgual 4.0.Aceptado 2024-06-22
Publicado 2024-06-30