Deep learning na educação inclusiva
uma revisão sistemática da literatura
DOI:
https://doi.org/10.22491/1982-1654.137303Keywords:
Deep Learning, Educação Inclusiva, Governança da InternetAbstract
Deep Learning, a branch of Machine Learning, employs deep neural networks to process data and identify complex patterns. Its application holds the potential to benefit the education of students with special needs, enabling the creation of adaptive systems that cater to their individual demands, such as accessibility features and language translation. However, challenges arise, including algorithmic bias, which reproduces inequalities, necessitating data protection, assurance of integrity in technology access, and responsibility in the use of these systems. Internet governance becomes crucial in establishing ethical, inclusive, and secure policies for the use of deep learning in inclusive education. This study proposes a systematic review of existing literature on the subject, aiming to identify the challenges faced and the approaches adopted in the context of internet governance. In doing so, the goal is not only to comprehend the potential of Deep Learning in inclusive education but also to propose guidelines and principles guiding the ethical and effective application of this technology, contributing to the construction of a more egalitarian and accessible educational environment for all.
Downloads
References
Brostolin, M. R., & Souza, T. M. F. de. (n.d.). A docência na educação infantil: pontos e contrapontos de uma educação inclusiva.
CGI.br. (n.d.). Caderno CGI.br: Uma Introdução à Governança da Internet. Retrieved June 22, 2023, from http://www.assistiva.com.br/aee.html
Cunha, V. M. A. L. da, Galvão, M. de A., & Grinberg, P. (2017). Governança da Internet: estrutura, conceitos e desafios. ComCiência.
Diaz, J. C. T., Moro, A. I., & Carrion, P. V. T. (2015). Mobile learning: perspectives. Rusc-universities And Knowledge Society Journal, 12(1), 38–49.
Dogmus, Z., Erdem, E., & Patoglu, V. (2015). REACT!: An Interactive Educational Tool for AI Planning for Robotics. IEEE Transactions On Education, 58(1), 15–24.
Hidayat, N., Wardoyo, R., & Azhari, S. (2018). Educational Data Mining (EDM) as a Model for Students' Evaluation in Learning Environment. 2018 Third International Conference on Informatics and Computing (ICIC), 16–19.
Luckin, R. (2018). Learning from the Learners: Successful Educational Innovation with Technology. London: Routledge.
Mrech, L. M. (n.d.). O que é educação inclusiva? Profa. Dra. Leny Magalhães Mrech. Faculdade de Educação da Universidade de São Paulo.
Nascimento, L. B. P. (2014). A importância da inclusão escolar desde a educação infantil (Trabalho de Conclusão de Curso, Departamento de Educação – Faculdade Formação de Professores, Universidade do Estado do Rio de Janeiro).
Silva, A. (2020). Ética Algorítmica: questões e desafios éticos do avanço tecnológico da sociedade da informação. Revista Brasileira de Ética em Ciência e Tecnologia, 2(1), 45-62.
Souza, R. H. V. de, Solagna, F., & Leal, O. F. (n.d.). As políticas globais de governança e regulamentação da privacidade na internet.
Zuin, A. A. S. (n.d.). Inteligência artificial e formação danificada: aprendizagem profunda e ética rasa entre professores e alunos.
Atendimento Educacional Especializado - AEE, Assistiva. (n.d.). Retrieved July 10, 2023, from http://www.assistiva.com.br/aee.html
Santos, A. P. D. (2008). Governança Corporativa e Desempenho em Instituições Privadas de Ensino Superior: Um Estudo de Caso em Minas Gerais. Revista de Contabilidade da UFBA, 2(3), 79.
Trevisan Pigatto, J. (2017). A atuação brasileira na governança da internet. Cadernos De Relações Internacionais, 2017(1).
Bueno, J. J., Bueno, S., & Portilho, E. M. L. (2023). Aspectos históricos da educação inclusiva no Brasil. Revista Ibero-Americana de Estudos em Educação, 18.
Antunes, M. D. C. P., & Fernandes, S. D. (2023). Educação não formal: Contributos para a educação inclusiva. Práxis Educacional, 19(50).
Yong, B., Jiang, X., Lin, J., Sun, G., & Zhou, Q. (2022). Online practical deep learning education: Using collective intelligence from a resource sharing perspective. Educational Technology & Society, 25(1), 193-204.
Zhang, Y. (2022). Analysis of college students’ network moral behavior by the history of ideological and political education under deep learning. Computational Intelligence and Neuroscience, 2022, 1-8.
Lessig, L. (2006). Code: Version 2.0. New York: Basic Books.
Benkler, Y. (2006). The wealth of networks: How social production transforms markets and freedom. New Haven: Yale University Press.
Berners-Lee, T. (1999). Weaving the web: The original design and ultimate destiny of the World Wide Web by its inventor. New York: HarperCollins.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright for papers published in this journal belong to the author, with rights of first publication for the journal. As the papers appears in this publicly accessed journal, the papers are for free use, receiving their credit, in educational and non-commercial uses. The journal will allow the use of the papers published for non-commercial purposes, including the right to send the paper to publicly accessed databases.Accepted 2024-06-17
Published 2024-06-30