Educational DataMining: A Study of the Factors That Cause School Dropout in Higher Education Institutions in Brazil

Marília N. C. A. Lima, Roberta A. de A. Fagundes

Resumo


Context:In Brazil, there is a high dropout rate in higher education institutions. Thus, it is clear that evasion is a frequent problem and that it is necessary to analyze the factors that cause it to enable solutions that can mitigate/ reduce this problem. Objetive: (1)perform a correlation analysis (Pearson and Spearman) of the educational factores of the School Census; (2)propose school dropout prediction models taking into account educational and economic factors using regression methods (linear, robust, ridge, lasso, clusterwise regression). Methodology: used the phases of the CRISP-DM methodology. Results: the factors related to not allowing financial assistance are related to as evasion, namely: food, permanence, didactic material, transportation. There are also factors related to the study period. The regression robust and linear regression show fewer errors. Conclusion: the correlations used present the selection of factors in a similar way, thus following a linear distribution. This study can help to create more investment in public policies, as it ratifies factors are related to this dropout problem.


Palavras-chave


Educational DataMining, Mineração de Dados Educacionais

Texto completo:

PDF


DOI: https://doi.org/10.22456/1679-1916.105950

Direitos autorais 2020 RENOTE



RENOTE - Revista Novas Tecnologias na Educação      ISSN 1679-1916

A RENOTE, possui a nota Qualis B1 (Ensino) e B1 (Interdisciplinar) no Sistema de Avaliação da CAPES.

Centro Interdisciplinar de Novas Tecnologias na Educação (CINTED) - Universidade Federal do Rio Grande do Sul (UFRGS)

Avenida Paulo Gama, 110 - Anexo III – 3o andar
Porto Alegre, RS, Brasil – CEP: 90040-060

Telefone: (51) 3308-4100
E-mail: renote@cinted.ufrgs.br