Right Ventricular Longitudinal Function in the Assessment of Fluid Responsiveness in Healthy Dogs
DOI:
https://doi.org/10.22456/1679-9216.141446Keywords:
canine, longitudinal strain, stroke volume, tissue motion annular displacementAbstract
Background: An essential component in the treatment of critically ill patients is volume replacement, but excessive intravascular fluid administration is associated with increased morbidity and mortality. Therefore, this intervention is only beneficial in patients who are fluid responsive, that is, when the individual has an increase in at least 15% of the stroke volume after a volume challenge administration. In addition, one of the determinants of fluid responsiveness is the systolic function, associated with the dynamic interactions between intravascular volume (preload) and vascular tone (afterload). Within this context, the aim of this study is to evaluate if conventional and advanced echocardiographic parameters of right ventricular longitudinal systolic function can assess fluid responsiveness in healthy spontaneously breathing dogs. The hypothesis was that some of these parameters would differ between responsive and non-responsive animals and could be used as a complementary measure for assessment of fluid responsiveness.
Materials, Methods & Results: This is a prospective study with 22 healthy dogs over 1 year of age included. The animals were referred to the Veterinary Medical Teaching Hospital of the Federal University of Paraná (UFPR) for elective neutering procedure. All dogs underwent conventional and advanced echocardiographic examination before and after administration of a volume challenge with 10 mL/kg lactate ringer intravenously for 20 min. The parameters evaluated were the fractional area change (FAC), the tricuspid annular plane systolic excursion (TAPSE), free wall longitudinal strain (LSt), and tissue motion annular displacement (TMAD). Based on the aortic velocity integral time variation, 31.82% of dogs were considered responsive and 68.18% were non-responsive to the volume challenge. For conventional echocardiography, TAPSE (mm/kg) > 1.35 (P = 0.018) had a good combination of sensitivity (85.71%) and specificity (86.67%), area under the curve value (0.814) and a relative smaller gray zone interval (1.04-1.66) for the identification of responsive dogs before volume challenge. Although, TAPSE (mm/m2) was also higher in the responsive dogs (P = 0.023) before volume challenge. As for advanced echocardiography, the TMAD (mm/kg) > 0.75 (P = 0.010) after volume challenge had the best combination of sensitivity (85.71%) and specificity (86.67%), area under the curve value (0.852) and a relative smaller gray zone interval (0.57-0.92) for the identification of responsive dogs. The LSt (%) and TMAD (mm/m2) were also significantly higher in responsive dogs (P = 0.031; P = 0.011) after volume challenge.
Discussion: Some of the echocardiographic parameters for assessing right ventricular systolic function differed between responsive and non-responsive dogs proving to been useful in the fluid responsiveness evaluation. To the author's knowledge, this is the 1st study to investigate the right ventricular systolic function in the assessment of fluid responsiveness in healthy, spontaneously breathing dogs. TAPSE and TMAD showed some advantages in terms of execution, although TAPSE (mm/kg) > 1.35 before the volume challenge had the power to predict fluid responsiveness without the need of a fluid administration, which can be seen as a great advantage, especially for patients with volume overload. However, it is also necessary to perform this type of evaluation in individuals with hemodynamic alterations to allow better understand the applicability of these techniques.
Keywords: canine, longitudinal strain, stroke volume, tissue motion annular displacement.
Downloads
References
Açar G., Alizade E., Avci A., Çakir H., Efe S.Ç., Kalkan M.E., Tabakci M.M., Toprak C., Tanboga I.H. & Ese A.M. 2014. Effect of blood donation-mediated volume reduction on regional right ventricular deformation in healthy subjects. The International Journal of Cardiovascular Imaging. 30(3): 543-548. DOI: 10.1007/s10554-014-0375-2. DOI: https://doi.org/10.1007/s10554-014-0375-2
Alonso P., Andres A., Miro V., Igual B., Sanchez I. & Salvador A. 2014. Diagnostic power of echocardiographic speckle tracking of the tricuspid annular motion to assess right ventricular dysfunction. International Journal of Cardiology. 172(1): 218-219. DOI: 10.1016/j.ijcard.2013.12.157. DOI: https://doi.org/10.1016/j.ijcard.2013.12.157
Ancierno M.J., Brown S., Coleman A.E., Jepson R.E., Papich M., Stepien R.L. & Syme H.M. 2018. ACVIM consensus statement: guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. Journal of Veterinary Internal Medicine. 32: 1803-1822. DOI: 10.1111/jvim.15331. DOI: https://doi.org/10.1111/jvim.15331
Boysen S. & Gommeren K. 2021. Assessment of volume status and fluid responsiveness in small animals. Frontiers in Veterinary Science. 8: 1-23. DOI: 10.3389/fvets.2021.630643. DOI: https://doi.org/10.3389/fvets.2021.630643
Bucci M., Rabozzi R., Guglielmini C. & Franci P. 2017. Respiratory variation in aortic blood peak velocity and caudal vena cava diameter can predict fluid responsiveness in anaesthetised and mechanically ventilated dogs. The Veterinary Journal. 277: 30-35. DOI: 10.1016/j.tvjl.2017.08.004. DOI: https://doi.org/10.1016/j.tvjl.2017.08.004
Carnabuci C., Hanas S., Ljungvall I., Tidholm A., Bussadori C., Haggstrom J. & Hoglund K. 2013. Assessment of cardiac function using global and regional left ventricular endomyocardial and epimyocardial peak systolic strain and strain rate in healthy labrador retriever dogs. Research in Veterinary Science. 95(1): 241-248. DOI: 10.1016/j.rvsc.2013.02.006. DOI: https://doi.org/10.1016/j.rvsc.2013.02.006
Cavanagh A.A., Sullivan L.A. & Hansen B.D. 2016. Retrospective evaluation of fluid overload and relationship to outcome in critically ill dogs. Journal of Veterinary Emergency and Critical Care. 26(4): 578-586. DOI: 10.1111/vec.12477. DOI: https://doi.org/10.1111/vec.12477
Cecconi M., Hofer C., Teboul J.L., Pettila V., Wilkman E., Molnar Z., Rocca G.D., Aldecoa C., Artigas A., Jog S., Sander M., Spies C., Lefrant J.Y. & Backer D. 2015. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Medicine. 41(9): 1529-1537. DOI: 10.1007/s00134-015-3850-x. DOI: https://doi.org/10.1007/s00134-015-3850-x
Cecconi M., Parsons A.K. & Rhodes A. 2011. What is a fluid challenge? Current Opinion in Critical Care. 17(3): 290-295. DOI: 10.1097/MCC.0b013e32834699cd. DOI: https://doi.org/10.1097/MCC.0b013e32834699cd
Celeita-Rodríguez N., Teixeira-Neto F.J., Garofalo N.A., Dalmagro T.L., Girotto C.H., Oliveira G.C. & Santos I.F. 2019. Comparison of the diagnostic accuracy of dynamic and static preload indexes to predict fluid responsiveness in mechanically ventilated, isoflurane anesthetized dogs. Veterinary Anaesthesia and Analgesia. 46(3): 276-288. DOI: 10.1016/j.vaa.2018.12.004. DOI: https://doi.org/10.1016/j.vaa.2018.12.004
Chaves R.C.F., Corrêa T.D., Bravim B.A., Cordioli R.L., Moreira F.T., Timenetsky K.T. & Assunção M.S.C. 2018. Assessment of fluid responsiveness in spontaneously breathing patients: a systematic review of literature. Annals of Intensive Care. 8(21): 1-10. DOI: 10.1186/s13613-018-0365-y. DOI: https://doi.org/10.1186/s13613-018-0365-y
Coudray A., Romand J.A., Treggiari M. & Bendjelid K. 2005. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Critical Care Medicine. 33(12): 2757-2762. DOI: 10.1097/01.ccm.0000189942.24113.65. DOI: https://doi.org/10.1097/01.CCM.0000189942.24113.65
Heenen S., Backer D. & Vincent JL. 2006. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Critical Care. 10(4): 1-7. DOI: 10.1186/cc4970. DOI: https://doi.org/10.1186/cc4970
Hori Y., Ukai Y., Hoshi F. & Higuchi S. 2008. Volume loading–related changes in tissue Doppler images derived from the tricuspid valve annulus in dogs. American Journal of Veterinary Research. 69(1): 33-38. DOI: 10.2460/ajvr.69.1.33. DOI: https://doi.org/10.2460/ajvr.69.1.33
Kjaergaard J., Iversen1 K.K., Vejlstrup1 N.G., Smith J., Bonhoeffer P., Søndergaard1 L. & Hassager C. 2010. Impacts of acute severe pulmonary regurgitation on right ventricular geometry and contractility assessed by tissue-Doppler echocardiography. European Journal of Echocardiography. 11(1): 19-26. DOI: 10.1093/ejechocard/jep149. DOI: https://doi.org/10.1093/ejechocard/jep149
Kjaergaard J., Snyder E.M., Hassager C., Oh J.K. & Johnson B.D. 2006. Impact of preload and afterload on global and regional right ventricular function and pressure: a quantitative echocardiography study. Journal of the American Society of Echocardiography. 19(5): 515-521. DOI: 10.1016/j.echo.2005.12.021. DOI: https://doi.org/10.1016/j.echo.2005.12.021
Lamia B., Ochagavia A., Monnet X., Chemla D., Richard C. & Teboul J.L. 2007. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Medicine. 33(7): 1125-1132. DOI: 10.1007/s00134-007-0646-7. DOI: https://doi.org/10.1007/s00134-007-0646-7
Li Y., Wang Y., Yang Y., Liu M., Meng X., Shi Y., Zhu W. & Lu X. 2018. Tricuspid annular displacement measured by 2-dimensional speckle tracking echocardiography for predicting right ventricular function in pulmonary hypertension: a new approach to evaluating right ventricle dysfunction. Medicine. 97(30): 1-7. DOI: 10.1097/MD.0000000000011710. DOI: https://doi.org/10.1097/MD.0000000000011710
Locatelli C., Spalla I., Zanaboni A.M., Brambilla P.G. & Bussadori C. 2016. Assessment of right ventricular function by feature-tracking echocardiography in conscious healthy dogs. Research in Veterinary Science. 105: 103-110. DOI: 10.1016/j.rvsc.2016.01.020. DOI: https://doi.org/10.1016/j.rvsc.2016.01.020
Marik P.E. & Lemson J. 2014. Fluid responsiveness: an evolution of our understanding. British Journal of Anaesthesia. 112(4): 617-620. DOI: 10.1093/bja/aet590. DOI: https://doi.org/10.1093/bja/aet590
Mawad W., Drolet C., Dahdah N. & Dallaire F. 2013. A review and critique of the statistical methods used to generate reference values in pediatric echocardiography. Journal of the American Society of Echocardiography. 26(1): 29-37. DOI: 10.1016/j.echo.2012.09.021. DOI: https://doi.org/10.1016/j.echo.2012.09.021
Michard F. 2002. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 121(6): 2000-2008. DOI: 10.1378/chest.121.6.2000. DOI: https://doi.org/10.1378/chest.121.6.2000
Miller A. & Mandeville J. 2016. Predicting and measuring fluid responsiveness with echocardiography. Echocardiography Research and Practice. 3(2): 1-12. DOI: 10.1530/ERP-16-0008. DOI: https://doi.org/10.1530/ERP-16-0008
Mondillo S., Galderisi M., Mele D., Cameli M., Lomoriello V.S., Zaca V., Ballo P., D’Andrea A., Muraru D., Losi M., Agricola E., D’Errico A., Buralli S., Sciomer S., Nistri S. & Badano L. 2011. Speckle tracking echocardiography: a new technique for assessing myocardial function. Journal of Ultrasound in Medicine. 30(1): 71-83. DOI: 10.7863/jum.2011.30.1.71. DOI: https://doi.org/10.7863/jum.2011.30.1.71
Monnet X., Marik P.E. & Teboul J.L. 2016. Prediction of fluid responsiveness: an update. Annals of Intensive Care. 6: 1-11. DOI: 10.1186/s13613-016-0216-7. DOI: https://doi.org/10.1186/s13613-016-0216-7
Morita T., Nakamura K., Osuga T., Yokoyama N., Morishita K., Sasaki N., Ohta H. & Takigushi M. 2018. Effect of acute volume overload on echocardiographic indices of right ventricular function and dyssynchrony assessed by use of speckle tracking echocardiography in healthy dogs. American Journal of Veterinary Research. 8(1): 51-60. DOI: 10.2460/ajvr.80.1.51. DOI: https://doi.org/10.2460/ajvr.80.1.51
Oricco S., Rabozzi R., Meneghini C. & Franci P. 2019. Usefulness of focused cardiac ultrasonography for predicting fluid responsiveness in conscious, spontaneously breathing dogs. American Journal of Veterinary Research. 80(4): 369-377. DOI: 10.2460/ajvr.80.4.369. DOI: https://doi.org/10.2460/ajvr.80.4.369
Ostroski C.J., Drobatz K.J. & Reineke E.L. 2017. Retrospective evaluation of and risk factor analysis for presumed fluid overload in cats with urethral obstruction: 11 cases (2002-2012). Journal of Veterinary Emergency and Critical Care. 27(5): 561-568. DOI: 10.1111/vec.12631. DOI: https://doi.org/10.1111/vec.12631
Park J.H., Negishi K., Kwon D.H., Popovic Z.B., Grimm R.A. & Marwick T.H. 2014. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. Cardiovascular Ultrasound. 22(3): 113-120. DOI: 10.4250/jcu.2014.22.3.113. DOI: https://doi.org/10.4250/jcu.2014.22.3.113
Petitjean C., Rougon N. & Cluzel P. 2005. Assessment of myocardial function: a review of quantification methods and results using tagged MRI. Journal of Cardiovascular Magnetic Resonance. 7(2): 501-516. DOI: 10.1081/jcmr-200053610. DOI: https://doi.org/10.1081/JCMR-200053610
Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K. & Schiller N.B. 2010. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography. 23: 685-713. DOI: 10.1016/j.echo.2010.05.010. DOI: https://doi.org/10.1016/j.echo.2010.05.010
Sanz J., Sánchez-Quintana D., Bossone E., Bogaard H.J. & Naeije R. 2019. Anatomy, function, and dysfunction of the right ventricle. Journal of the American College of Cardiology. 73(12): 1463-1482. DOI: 10.1016/j.jacc.2018.12.076. DOI: https://doi.org/10.1016/j.jacc.2018.12.076
Silva V.B.C., Wolf M., Lucina S.B., Sarraff-Lopes A.P. & Sousa M.G. 2020. Assessment of right ventricular systolic function by tissue motion annular displacement in healthy dogs. Journal of Veterinary Cardiology. 32: 40-48. DOI: 10.1016/j.jvc.2020.09.010. DOI: https://doi.org/10.1016/j.jvc.2020.09.010
Sisson D. & Schaeffer D. 1991. Changes in linear dimensions of the heart, relative to body weight, as measured by M-mode echocardiography in growing dogs. American Journal of Veterinary Research. 52(10): 1591-1596. PMID: 1767977. DOI: https://doi.org/10.2460/ajvr.1991.52.10.1591
Suzuki K., Akashi Y.J., Mikukoshi K., Kou S., Takai M., Izumo M., Hayashi A., Ohtaki E., Nobuoka S. & Miyake F. 2012. Relationship between left ventricular ejection fraction and mitral annular displacement by speckle tracking echocardiography in patients with different heart diseases. Journal of Cardiology. 60: 55-60. DOI: 10.1016/j.jjcc.2012.01.014. DOI: https://doi.org/10.1016/j.jjcc.2012.01.014
Szabo G., Soos P., Bahrle S., Radovits T., Weigang E., Kékesi V., Merkely B. & Hagl S. 2006. Adaptation of the right ventricle to an increased afterload in the chronically volume overloaded heart. Annals of Thoracic Surgery. 82(3): 989-995. DOI: 10.1016/j.athoracsur.2006.04.036. DOI: https://doi.org/10.1016/j.athoracsur.2006.04.036
Thomas W.P., Gaber C.E., Jacobs G.J., Kaplan P.M., Lombard C.W., Moise N.S. & Moses B.L. 1993. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. Journal of Veterinary Internal Medicine. 7(4): 247-252. DOI: 10.1111/j.1939-1676.1993.tb01015.x. DOI: https://doi.org/10.1111/j.1939-1676.1993.tb01015.x
Visser L.C. 2017. Right ventricular function: imaging techniques. Veterinary Clinics of North America: Small Animal Practice. 47(5): 989-1003. DOI: 10.1016/j.cvsm.2017.04.004. DOI: https://doi.org/10.1016/j.cvsm.2017.04.004
Visser L.C., Scansen B.A., Schober K.E. & Bonagura J.D. 2015. Echocardiographic assessment of right ventricular systolic function in conscious healthy dogs: Repeatability and reference intervals. Journal of Veterinary Cardiology. 17(2): 83-96. DOI: 10.1016/j.jvc.2014.10.003. DOI: https://doi.org/10.1016/j.jvc.2014.10.003
Visser L.C., Sintov D.J. & Oldach M.S. 2018. Evaluation of tricuspid annular plane systolic excursion measured by two-dimensional echocardiography in healthy dogs: repeatability, reference intervals, and comparison with M-mode assessment. Journal of Veterinary Cardiology. 20(3): 165-174. DOI: 10.1016/j.jvc.2018.04.002. DOI: https://doi.org/10.1016/j.jvc.2018.04.002
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stephany Buba Lucina, Eloisa Muehlbauer, Vinícius Bentivóglio Costa Silva, Matheus Folgearini Silveira, Marcela Wolf, Julio Pereira dos Santos, Juan Carlos Duque Moreno, Marlos Gonçalves Sousa , Tilde Rodrigues Froes

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino