An Agent-Based Model for Simulating Irrigated Agriculture in the Samambaia Basin in Goiás

Guido Dutra de Oliveira, Pedro Phelipe Gonçalves Porto, Conceição de Maria Albuquerque Alves, Celia Ghedini Ralha

Abstract


Agriculture is one of the main economic activities in Brazil. The intensive use of water for irrigated agriculture leads to water rise demand contributing to increase water stress. Agent-based models help assess this problem with promising applications entailing an organizing principle to inform us of how to view a real-world system and effectively build a model. In this work, agent-based modeling is applied to simulate water usage for irrigation in agricultural production in the Samambaia river basin in the municipality of Cristalina in the Goias state of Brazil. The use of real data enables analysis of resource availability in a scenario with high demand irrigation, allowing a greater understanding of the needs of the parties involved.

Keywords


agent-based modeling; agent-based simulation; irrigated agriculture; water resources

Full Text:

PDF

References


EUROPEAN COMMITTEE OF THE REGIONS and LIVING PROSPECTS LTD and PROGRESS CONSULTING S.R.L. Water scarcity and desertification: A survey on the ground analysis result europe 2020 mp survey - the role of regional and local authorities in promoting a sustainable water policy. Luxembourg: EU publications, 2013. Acesso em: 30 de ago. de 2020. Dispon ́ıvel em: 〈http://dx.doi.org/10.2863/77141〉.

PETRUZZELLO, M. Water scarcity. Chicago: Encyclopedia Britannica, 2020. Acesso em: 30 de ago. de 2020. Dispon ́ıvel em: 〈https://www.britannica.com/topic/water-scarcity〉.

AG ˆENCIA NACIONAL DE ́AGUAS E SANEAMENTO B ́ASICO. Conjuntura dos recursos h ́ıdricos no Brasil 2019: Informe anual. Bras ́ılia: Minst ́erio do Desenvolvimento Regional, Governo Federal, Brasil, 2019. Acesso em: 5 de mar. de 2019. Dispon ́ıvel em: 〈http://conjuntura.ana.gov.br〉.

AG ˆENCIA NACIONAL DE ́AGUAS E SANEAMENTO B ́ASICO. Atlas Irrigac ̧ ̃ao: Uso da ́agua na agricultura irrigada. Bras ́ılia: Minst ́erio do Desenvolvimento Regional, Governo Federal, Brasil, 2019. Acesso em: 21 de maio de 2019. Dispon ́ıvel em: 〈http://atlasirrigacao.ana.gov.br〉.

ARIS, R. Mathematical Modelling Techniques. Mineola: Dover Publications, 1994. (Dover Books on Computer Science Series).

SAUER, T. Numerical Analysis. 2. ed. Londres: Pearson, 2013. (Pearson Custom Library).

BOYES, W. (Ed.). Instrumentation Reference Book. 3. ed. Oxford: Butterworth Heinemann, 2003.

ZANDBERGEN, P. Python Scripting for ArcGIS. 1. ed. Redlands: ESRI Press, 2013.

REEVES, R. Manual of Remote Sensing. Bethesda: American Society of Photogrammetry, 1975. v. 2. (Manual of Remote Sensing, v. 2).

HUBER, P. J. Robust Statistics. Hoboken: John Wiley & Sons, 2004. (Wiley Series in Probability and Statistics).

ASQC Task Force and Automotive Industry Action Group. Measurement Systems Analysis: Reference manual. Southfield: Automotive Industry Action Group, 1990. Acesso em: 10 de ago. de 2020. Dispon ́ıvel em: 〈https://books.google.com.br/books?id=p8kmAQAAMAAJ〉.

RALHA, C. G. et al. A multi-agent model system for land-use change simulation. Environmental Modelling & Software, v. 42, p. 30–46, Abril 2013. Dispon ́ıvel em: 〈https://doi.org/10.1016/j.envsoft.2012.12.003〉.

FAN, F. M.; BRAVO, J. M.; COLLISCHONN, W. Modelagem baseada em agentes para a simulac ̧ ̃ao da dispers ̃ao de poluentes em cursos d’ ́agua. Engenharia Sanit ́aria e Ambiental, Rio de Janeiro, v. 21, n. 4, p. 739–774, 2016.

RALHA, C. G.; ABREU, C. G. Mase: A multi-agent-based environmental simulator. In: ADAMATTI, D. F. (Ed.). Multi-Agent-Based Simulations Applied to Biological and Environmental Systems. Hershey, PA: IGI Global, 2017.

PORTO, P. P. G. Construc ̧ ̃ao de modelo multiagente para avaliac ̧ ̃ao de cen ́arios de manejo de recursos h ́ıdricos. Dissertac ̧ ̃ao (Mestrado em Tecnologia Ambiental e Recursos H ́ıdricos) — Universidade de Bras ́ılia, Bras ́ılia, 2019.

LAW, A. M. Simulation Modeling & Analysis. 4. ed. New York, NY, USA: McGraw-Hill, 2007.

RICHARDSON, G. P. The Basic Elements of System Dynamics. In: MEYERS, R. A. (Ed.). Complex Systems in Finance and Econometrics. New York: Springer, 2011.

RUBINSTEIN, R. Y.; KROESE, D. P. Simulation and the Monte Carlo Method. 3. ed. Hoboken: Wiley Publishing, 2016.

CELLIER, F. E.; KOFMAN, E. Continuous System Simulation. Berlin, Heidelberg: Springer-Verlag, 2006.

MACAL, C. M. Everything you need to know about agent-based modelling and simulation. Journal of Simulation, Taylor & Francis, Abingdon-on-Thames, v. 10, n. 2, p. 144–156, 2016. Acesso em: 20 de ago. de 2020. Dispon ́ıvel em:〈https://doi.org/10.1057/jos.2016.7〉.

ALVARES, C. A. et al. K ̈oppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Schweizerbart Science Publishers, Stuttgart, Germany, v. 22, n. 6, p. 711–728, 12 2013. Acesso em: 18 de nov. de 2020. Dispon ́ıvel em:〈http://dx.doi.org/10.1127/0941-2948/2013/0507〉.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTAT ́ISTICA. Base de dados: Cidades. Rio de Janeiro: Governo Federal, Brasil, 2019. Acesso em: 20 de abr. de 2019. Dispon ́ıvel em: 〈https://cidades.ibge.gov.br/brasil/go/cristalina/pesquisa/38/47001?tipo=ranking&ano=2017〉

TAILLANDIER, P. et al. Participatory modeling and simulation with the gama platform. Journal of Artificial Societies and Social Simulation, Guildford, v. 22, n. 2, p. 3, 2019. Acesso em: 22 de nov. de 2020. Dispon ́ıvel em:〈http://jasss.soc.surrey.ac.uk/22/2/3.html〉.

GRIMM, V.; BERGER, U.; AL. et. A standard protocol for describing individual-based and agent-based models. Ecological Modelling, Elsevier, Amsterd ̃a, v. 198, n. 1-2, p. 115–126, Setembro de 2006. Dispon ́ıvel em: 〈https://dx.doi.org/10.1016/j.ecolmodel.2006.04.023〉.

GRIMM, V. et al. The ODD protocol: A review and first update. Ecological Modelling, Elsevier, Amsterd ̃a, v. 221, n. 23, p. 2760–2768, Novembro de 2010. Dispon ́ıvel em: 〈https://dx.doi.org/10.1016/j.ecolmodel.2010.08.019〉.

BERGLUND, E. Using Agent-Based Modeling for Water Resources Planning and Management. Journal of Water Resources Planning and Management, Reston, v. 141, n. 11, Novembro de 2015. Dispon ́ıvel em: 〈https://doi.org/10.1061/(ASCE)WR.1943-5452.0000544〉.

HUBER, L. et al. Agent-based modelling of a coupled water demand and supply system at the catchment scale. Sustainability, v. 11, n. 21, 2019. Special Issue Watershed Modelling and Management for Sustainability. Acesso em: 15 de ago. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.3390/su11216178〉.

HYUN, J.-Y. et al. Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions. Hydrology and Earth System Sciences, G ̈ottingen, v. 23, n. 5, p. 2261–2278, 2019. Acesso em: 10 de out. de 2020. Dispon ́ıvel em: 〈https://hess.copernicus.org/articles/23/2261/2019/〉.

FARIAS, G. et al. Water resources analysis: An approach based on agent-based modeling. Revista de Inform ́atica Te ́orica e Aplicada (RITA), Porto Alegre, v. 27, n. 2, 2020. Dispon ́ıvel em: 〈https://doi.org/10.22456/2175-2745.94319〉.

LIN, Z. et al. Using agent-based modeling for water resources management in the bakken region. Journal of Water Resources Planning and Management, Reston, v. 146, n. 1, Janeiro de 2020. Acesso em: 15 de out. de 2020. Dispon ́ıvel em:〈https://doi.org/10.1061/(ASCE)WR.1943-5452.0001147〉.

BELAQZIZ, S. et al. An agent based modeling for the gravity irrigation management. Procedia Environmental Sciences, v. 19, p. 804–813, 2013. Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and Challenges. Acesso em: 10 de set. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1016/j.proenv.2013.06.089〉.

ALLAIN, S.; PLUMECOCQ, G.; LEENHARDT, D. Linking deliberative evaluation with integrated assessment and modelling: A methodological framework and its application to agricultural water management. Futures, Amsterd ̃a, v. 120, p. 102566, 2020. Dispon ́ıvel em: 〈https://doi.org/10.1016/j.futures.2020.102566〉.

TAMBURINO, L.; BALDASSARRE, G. D.; VICO, G. Water management for irrigation, crop yield and social attitudes: A socio-agricultural agent-based model to explore a collective action problem. Hydrological Sciences Journal, Taylor & Francis, Rennes Cedex, v. 65, n. 11, p. 1815–1829, 2020. Acesso em: 10 de out. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1080/02626667.2020.1769103〉.

VAN OEL, P. R. et al. Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach. Environmental Modelling & Software, v. 25, n. 4, p. 433 – 443, 2010. Acesso em: 15 de ago. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1016/j.envsoft.2009.10.018〉.

RURAL, G. Cristalina, em GO, sofre com a falta de chuva e a m ́a distribuic ̧ ̃ao da ́agua. 2017. Acesso em: 20 de nov. de 2020. Dispon ́ıvel em: 〈http://g1.globo.com/economia/agronegocios/globo-rural/noticia/2017/10/cristalina-em-go-sofre-com-falta-de-chuva-e-ma-distribuicao-da-agua.html〉.

BOUSQUET, F. et al. Cormas: Common-pool resources and multi-agent systems. In: POBIL, A. Pasqual del; MIRA, J.; ALI, M. (Ed.). Tasks and Methods in Applied Artificial Intelligence. Berlim: Springer, 1998. p. 826–837.

WILENSKY, U.; RAND, W. An introduction to agent-based modeling: Modeling natural, social and engineered complex systems with netlogo. Cambridge, MA, USA: MIT Press, 2015.

NORTH, M. J. et al. Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling, Berlim, v. 1, p. artigo n. 3, Marc ̧o de 2013. Acesso em: 10 de ago. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1186/2194-3206-1-3〉.

GAUDOU, B. et al. The MAELIA multi-agent platform for integrated analysis of interactions between agricultural land-use and low-water management strategies. In: ALAM, S. J.; PARUNAK, H. V. D. (Ed.). XIV International Workshop on Multi-Agent-Based Simulation (MABS). Berlim: Springer, 2014. p. 85–100.

TAILLANDIER, P. et al. Building, composing and experimenting complex spatial models with the gama platform. Geoinformatica, Springer Science+Business Media, LLC, part of Springer Nature, Berlim, v. 23, p. 299–322, 2019. Acesso em: 15 de ago. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1007/s10707-018-00339-6〉.

VOINOV, A.; BOUSQUET, F. Modelling with stakeholders. Environmental Modelling & Software, v. 25, n. 11, p. 1268–1281, 2010. Thematic Issue - Modelling with Stakeholders. Acesso em: 20 de nov. de 2020. Dispon ́ıvel em:〈http://www.sciencedirect.com/science/article/pii/S1364815210000538〉.

TAILLANDIER, F.; ADAM, C. Games ready to use: A serious game for teaching natural risk management. Simulation & Gaming, Thousand Oaks, v. 49, n. 4, p. 441–470, 2018. Acesso em: de 19 nov. de 2020. Dispon ́ıvel em: 〈https://doi.org/10.1177/1046878118770217〉.

DENARDIN, J. E. et al. Diretrizes do sistema plantio direto no contexto da agricultura conservacionista. Passo Fundo: Embrapa Trigo, 2012. Acesso em: 30 de ago. de 2020. Dispon ́ıvel em: 〈http://www.cnpt.embrapa.br/biblio/do/p do141.htm〉.

MONTEPLAN; IRRIGO. Relat ́orio T ́ecnico, An ́alise da Resoluc ̧ ̃ao ANA 562/2010: Marco Regulat ́orio Rio S ̃ao Marcos. Cristalina – GO. Fortaleza: [s.n.], 2011. Dispon ́ıvel em: 〈https://www.gov.br/ana/pt-br/todos-os-documentos-do-portal/documentos-sre/marcos-regulatorios/562-2010.pdf〉.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. Unified Modeling Language User Guide. 2. ed. Boston: Addison-Wesley, 2005.

AG ˆENCIA NACIONAL DE ́AGUAS. Nota T ́ecnica nº 132/2010/GEREG/SOF-ANA. Bras ́ılia: Minist ́erio de Desenvolvimento Regional, Governo Federal, Brasil, 2010.

SILVA, L. M. da C.; HORA, M. de A. G. M. da. Conflito pelo Uso da ́Agua na Bacia Hidrogr ́afica do Rio S ̃ao Marcos: O Estudo de Caso da UHE Batalha. ENGEVISTA, Rio de Janeiro, v. 17, n. 2, p. 166–174, Junho de 2015.

SOUSA, V. C. M. A quest ̃ao agr ́aria e os conflitos pelo uso da ́Agua dentro de uma perspectiva da teoria cr ́ıtica dos direitos humanos. Revista de Direito Agr ́ario e Agroambiental, v. 4, n. 1, 2018. Acesso em: 10 de nov. de 2020. Dispon ́ıvel em:〈http://dx.doi.org/10.26668/IndexLawJournals/2526-0081/2018.v4i1.4357〉




DOI: https://doi.org/10.22456/2175-2745.107041

Copyright (c) 2021 Guido Dutra de Oliveira, Pedro Phelipe Gonçalves Porto, Conceição de Maria Albuquerque Alves, Celia Ghedini Ralha

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indexing databases:
        

Acknowledgments: