Um modelo computacional para a simulação de sistemas de transporte urbano

Daniel Marques Gomes Morais, Luciano Antonio Digiampietri

Abstract


Atualmente, as dificuldades enfrentadas no deslocamento urbano são consideradas um problema extremamente importante, especialmente nas grandes cidades. O planejamento adequado do sistema de transporte urbano é essencial para minimizar o tempo e os custos de viagem, melhorar a qualidade de vida e melhorar o ambiente urbano.
Esta trabalho parte da premissa de que os sistemas de simulação podem ser utilizados para estudar diferentes alternativas para melhorar o sistema de transporte, de modo que a tomada de decisão pode ser melhor justificada, podendo otimizar o deslocamento urbano. Portanto, este trabalho apresenta a proposta e o desenvolvimento de um modelo computacional para simulação de sistemas de transporte urbano. O modelo proposto visa a simular modelos mesoscópicos e microscópicos, incluindo os comportamentos dos usuários no planejamento de rotas. Uma estrutura para o desenvolvimento de aplicações de simulação é descrita, com uma implementação usando como cenário o Metropolitano de São Paulo (Metrô), considerando os dados da pesquisa Origem-Destino para teste e validação do modelo aqui proposto.


Keywords


Simulação; Transporte urbano; Processo de decisão do usuário;

Full Text:

PDF

References


BARCELO, J. Fundamentals of Traffic Simulation. 1. ed. New York, USA: Springer, 2010. v. 145. (International Series in Operations Research & Management Science, v. 145).

RODRIGUE, J.; COMTOIS, C.; SLACK, B. The Geography of Transport System. 2. ed. New York, USA: Routledge, 2007. v. 1.

ORTUZAR, J. D.; WILLUMSEN, L. G. Modelling Transport. 4. ed. Chichester, UK: Wiley, 2011. v. 1.

KAY, J. Obliquity: Why our Goals are Best Achieved Indirectly. 1. ed. London, UK: Profile Books, 2010. v. 1.

LINDBLOM, C. E. The science of "muddling through". Public Adm. Rev., v. 19, n. 2, p. 19, 79–88, 1959.

MORAIS, D. M. G.; DIGIAMPIETRI, L. A. Uma revisão acerca dos métodos de simulação envolvendo transporte multimodal. Rev. Sist. Inf. FSMA, v. 10, n. 1, p. 2–9,

JIN, X.; WHITE, R. An agent-based model of the influence of neighbourhood design ondaily trip patterns. Comput. Environ. Urban Syst., v. 36, n. 5, p. 398–411, 2012.

KRETZ, T. et al. Quickest paths in simulations of pedestrians. Adv. Complex Syst., v. 14, n. 5, p. 733–759, 2011.

XUE, Y. et al. Exploring jamming transitions and density waves in bidirectional pedestrian traffic. The European Physical Journal B - Condensed Matter and Complex Systems, v. 69, n. 2, p. 289–295, 2009.

AL-NASUR, S.; KACHROO, P. A microscopic-to- macroscopic crowd dynamic model. In: ABDULHAI, B. et al. (Ed.). Intelligent Transportation Systems Conference. Toronto, Canada: IEEE, 2006. v. 1.

CHEN, M.; B, G. A study of step calculations in traffic cellular automaton models. In: 13th International Intelligent Transportation Systems IEEE Conference. Funchal, Portugal: IEEE, 2010.

GAO, L. et al. A delay model of pedestrian-vehicle system on two crossings. In: 5th Advanced Forum on Transportation of China. Beijing, China: IEEE, 2009. v. 1.

HUANG, L.; WU, J. Fuzzy logic based cyclists’ path planning behavioral model in mixed traffic flow. In: 11th International IEEE Conference on Intelligent Transportation Systems. Beijing, China: IEEE, 2008. v. 1.

HUANG, L.; WU, J. Exploring jamming transitions and density waves in bidirectional pedestrian traffic. IEEE Intell. Transp. Syst. Mag, v. 1, n. 2, p. 13–19, 2009.

HUIXIN, W.; WENHONG, W. Microscopic dynamic simulation model for pedestrian-vehicle mixed traffic. In: International Conference on E-Health Networking, DigitalEcosystems and Technologies. Shenzhen, China: IEEE, 2010. v. 1.

JUNHUA, W. Pedestrian’s critical cross gap and its application in conflict simulation. In: Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation - Volume 02. Washington, DC, USA: IEEE Computer Society, 2010. v. 02.

KLUGL, F.; RINDSFUSER, G. Large-scale agent-based pedestrian simulation. In: PETTA, P.; MüLLER, J.; KLUSCH, M. a. (Ed.). Multiagent System Technologies. 1. ed. Berlin / Heidelberg, Germany: Springer, 2007, (Lecture Notes in Computer Science, v. 4687). p. 145–156.

KOKKINOGENIS LUCIO PASSOS, R. R. Z.; GABRIEL, J. Towards the next-generation traffic simulation tools: a first evaluation. In: Proceedings of the 6th Doctoral Symposium in Informatics Engineering. Chaves, Portugal: IEEE, 2011. v. 1.

LIORIS, E.; COHEN, G.; FORTELLE, A. de L. Overview of a dynamic evaluation of collective taxi systems providing an optimal performance. In: IV IEEE Intelligent Vehicles Symposium. San Diego, USA: IEEE, 2010. v. 1.

MA, W.; MA, W.; YANG, X. Development and evaluation of a fuzzy logic control approach for pedestrian crossing. In: International Conference on Intelligent Computation Technology and Automation. Washington, USA: IEEE Computer Society, 2008. v. 1.

MA, W.; YANG, X. Signal coordination models for midblock pedestrian crossing and adjacent intersections. In: 2nd International Conference on Intelligent Computation Technology and Automation. Washington, DC, USA: IEEE Computer Society, 2009. v. 2.

MA, J. et al. Dynamic features of pedestrian-vehicle counter flow conflicts. 3rd Int. Conf. Transp. Eng., v. 1, n. 1, p. 697–702, 2011.

PAN, M. et al. Microscopic simulation research on signal cycle length of mixed traffic considering violation. In: International Conference on Intelligent Computation Technology and Automation. Washington, DC, USA: IEEE Computer Society, 2010. v. 2.

WANG, L. et al. Mixed flow simulation at urban intersections: Computational comparisons between conflict-point detection and cellular automata models. In:

YU, L. et al. (Ed.). International Joint Conference on Computational Sciences and Optimization. Washington, DC, USA: IEEE Computer Society, 2009. v. 2.

WANG, T.; CHEN, J. An improved cellular automaton model for urban walkway bi-directional pedestrian flow. In: HOU, Z. (Ed.). International Conference on Measuring Technology and Mechatronics Automation. Washington, DC, USA: IEEE Computer Society, 2009. v. 3.

XIAOBEI, J.; HUI, X.; HONGWEI, G. Analysis of crowd behavior in route choice based on dynamic

programming. 9th International Conference of Chinese Transportation Professionals: Critical Issues in Transportation System Planning, Development, and

Management, v. 358, n. 1, p. 742–750, 2009.

USHER, J.; LIU, X.; KOLSTAD, E. Simulation of pedestrian behavior in intermodal facilities. Spring Simul. Multiconference, v. 2, n. 3, p. 66–82, 2010.

BAZZAN, A. L. C.; KLÜGL, F. Introduction to Intelligent Systems in Traffic and Transportation. 1. ed. California, USA: Morgan & Claypool Publishers, 2013. ’1. (Synthesis Lectures on Artificial Intelligence and Machine Learning, ’1).

HORNI, A.; NAGEL, K.; AXHAUSEN, K. Multi-Agent Transport Simulation MATSim. 1. ed. London, UK: Ubiquity Press, 2016. v. 1.

CHARYPAR, D.; BALMER, M.; AXHAUSEN, K. W. High-performance traffic flow microsimulation for large problems. In: 88th Annual Meeting of the Transportation Research Board. Washington, USA: TRB, 2009.

Companhia do Metropolitano de São Paulo. Companhia do Metropolitano de São Paulo - Metrô. Disponível em: .

WOOLDRIDGE, M. An Introduction to Multiagent Systems. 2. ed. Chichester, UK: Wiley, 2002. v. 1.

Coordenadoria de Pesquisa e Avaliação de Transporte. Pesquisa Origem e Destino. 2007.

MORAIS, D. M. G.; DIGIAMPIETRI, L. A. Simulação de transportes sobre trilhos usando automatos celulares para os trens e agentes inteligentes para os usuarios. Simposio Brasileiro de Sistemas de Informação, v. 1, n. 1, p. 1–12, 2014.




DOI: https://doi.org/10.22456/2175-2745.80557

Copyright (c) 2018 Daniel Marques Gomes Morais, Luciano Antonio Digiampietri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.