Automatic Detection and Counting of Tuta Absoluta Insect in Trap Images
DOI:
https://doi.org/10.22456/2175-2745.143522Keywords:
Biological Pest Control, Precision Agriculture, Computer Vision, Deep Learning, Tuta absolutaAbstract
The integration of artificial intelligence (AI) into agriculture offers solutions to challenges such as pest control. AI can improve productivity and sustainability through precision agriculture. This paper presents an automatic system for identifying and counting Tuta absoluta pests in trap images, integrated into a monitoring platform. The platform uses a biological defensive system for sustained pest control. The solution employs ImageAI deep learning algorithms to detect and classify pests, using YOLOv3 and TinyYOLOv3 models. We provide assessments of the performance and resource consumption of the evaluated models. YOLOv3 achieved a detection precision of 95.28% in images with 10-50 insects, decreasing to 87.51% for around 100 insects. Despite YOLOv3 demonstrating higher precision in the detection of the number of insects, the Tiny YOLOv3 model was shown to be 4.5 times faster in the training process and occupies almost 8 times less storage space.
Downloads
References
ABIA. Notícias - ABIA - Associação Brasileira da Indústria de Alimentos. 2024. ⟨https://www.abia.org.br/noticias/industria-de-alimentos-do-brasil-gera-70-mil-vagas-de-emprego-em-2023⟩. (Accessed on 09/05/2024).
BANDNEWS. Mercado de alimentos saudáveis deve faturar R$ 127 bilhões. 2024. ⟨https://bandnewsfmcuritiba.com/mercado-de-alimentos-saudaveis-deve-faturar-r-127-bilhoes/⟩. (Accessed on 09/05/2024).
INVESTING. Defensivos Agrícolas e Bioinsumos — Investing.com. 2022. ⟨https://br.investing.com/analysis/defensivos-agricolas-e-bioinsumos-200449414⟩. (Accessed on 09/05/2024).
ALETDINOVA, A. A. Popular mobile applications for crop production. IOP Conference Series: Earth and Environmental Science, IOP Publishing, v. 666, n. 3, p. 032036, mar 2021. Disponível em: ⟨https://dx.doi.org/10.1088/1755-1315/666/3/032036⟩.
CHRISTAKAKIS, P. et al. Smartphone-based citizen science tool for plant disease and insect pest detection using artificial intelligence. Technologies, v. 12, n. 7, 2024. ISSN 2227-7080.
NASIM, S. et al. Artificial intelligence techniques for the pest detection in banana field: A systematic review. Pakistan Journal of Biotechnology, v. 20, n. 02, p. 209–223, Jun. 2023.
RAHMAN, S. M.; RAVI, G. Role of artificial intelligence in pest management. Current Topics in Agricultural Sciences Vol, v. 7, p. 64–81, 2022.
BÜTÜNER, A. K. et al. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Journal of Agricultural Sciences, Ankara University, v. 30, n. 1, p. 99–107, 2024.
GEORGANTOPOULOS, P. et al. A multispectral dataset for the detection of Tuta absoluta and Leveillula taurica in tomato plants. Smart Agricultural Technology, v. 4, p. 100146, 2023. ISSN 2772-3755. Disponível em: ⟨https://www.sciencedirect.com/science/article/pii/S2772375522001101⟩.
ULLAH, N. et al. An efficient approach for crops pests recognition and classification based on novel DeepPestNet deep learning model. IEEE Access, IEEE, v. 10, p. 73019–73032, 2022.
VEIGA, A. C. P. Compatibilidade entre produtos químicos e biológicos à base de Bacillus thuringiensis Berliner no controle de Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Tese (Doutorado), 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gabriel Souza, Camila Vargas, Jean Hamerski

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autorizo aos editores a publicação de meu artigo, caso seja aceito, em meio eletrônico de acordo com as regras do Public Knowledge Project.