Using the Myers-Briggs Type Indicator (MBTI) for Modeling Multiagent Systems
DOI:
https://doi.org/10.22456/2175-2745.110015Keywords:
Multiagent systems, MAS, High-Performance Teams, MBTIAbstract
The formation of high-performance teams has been a constant challenge for organizations, which despite considering human capital as one of the most important resources, it still lacks the means to allow them to have a better understanding of several factors that influence the formation of these teams. In this sense, studies also demonstrate that teamwork has a significant impact on the results presented by organizations, in which human behavior is highlighted as one of the main aspects to be considered in the building of work teams. The Myers-Briggs Type Indicator seeks to classify the behavioral preferences of individuals around eight characteristics, which grouped as dichotomies, describe different psychological types. With it, researchers have sought to expand the ability to understand the human factor, using strategies with multiagent systems that, through experiments and simulations, using computer resources, enable the development of artificial agents that simulate human actions. In this work, we present an overview of the research approaches that use MBTI to model agents, aiming at providing a better knowledge of human behavior. Additionally, we make a preliminary discussion of how these results could be explored in order to advance the studies of psychological factors' influence in organizations' work teams formation.Downloads
References
BRAZ, L. F.; SICHMAN, J. S. Um estudo do myers-briggs type indicator (mbti) para modelagem de sistemas multiagentes no apoio a processos de recrutamento e selec ̧ ̃ao nas empresas. In: Anais do XIV Workshop-Escola de SistemasAgentes, seus Ambientes e aplicac ̧ ̃oes de Agentes, seus Ambientes e aplicac ̧ ̃oes. [S.l.]: Zenodo, 2020. p. 250–255.
ZANELLI, J. C.; BORGES-ANDRADE, J. E.; BASTOS, A. V. B. Psicologia, Organizações e Trabalho no Brasil-2. [S.l.]: AMGH Editora, 2014.
IBARRA, M. F. Psicotecnia. historia de un encuentro entre la psicolog ́ıa y la t ́ecnica. Revista Internacional sobre Subjetividad, Pol ́ıtica y Arte, v. 11, n. 2, p. 71–85, 2015.
SPECTOR, P. E. Psicologia nas organizacoes. [S.l.]: Saraiva Educacao SA, 2009.
ESCHLEMAN, K. J.; WRIGHT, C. W. (mis) steps for attracting high resilience workers. Industrial and Organizational Psychology, Cambridge University Press, v. 9, n. 2, p. 429–435, 2016.
MYERS, I. B. et al. MBTI manual: A guide to the development and use of the Myers-Briggs Type Indicator. [S.l.]: Consulting Psychologists Press Palo Alto, CA, 1998. v. 3.
MUPINGA, D. M.; NORA, R. T.; YAW, D. C. The learning styles, expectations, and needs of online students. College teaching, Taylor & Francis, v. 54, n. 1, p. 185–189, 2006.
BROWN, F. W.; REILLY, M. D. The myers-briggs type indicator and transformational leadership. Journal of Management Development, Emerald Group Publishing Limited, 2009.
LUO, C. The application of mbti theory in hiring sales staffs. In: SPRINGER. The 19th International Conference on Industrial Engineering and Engineering Management. [S.l.], 2013. p. 703–709.
ALVARES, L. O.; SICHMAN, J. S. Introduc ̧ao aos sistemas multiagentes. In: XVII Congresso da SBC-Anais JAI’97. [S.l.: s.n.], 1997.
SYCARA, K. P. Multiagent systems. AI magazine, v. 19, n. 2, p. 79–79, 1998.
MYERS, I. B. Introduction to type: A guide to understanding your results on the Myers-Briggs Type Indicator . Mountain View, CA: CPP. [S.l.]: Inc, 1998.
SALVIT, J.; SKLAR, E. Toward a myers-briggs type indicator model of agent behavior in multiagent teams. In: SPRINGER. International Workshop on Multi-Agent Systems and Agent-Based Simulation. [S.l.], 2010. p. 28–43.
FURNHAM, A.; STRINGFIELD, P. Personality and work performance: Myers-briggs type indicator correlates of managerial performance in two cultures. Personality and individual Differences, Elsevier, v. 14, n. 1, p. 145–153, 1993.
COOPER, S. E.; MILLER, J. A. Mbti learning style-teaching style discongruencies. Educational and Psychological Measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 51, n. 3, p. 699–706, 1991.
CHEN, S.-J.; LIN, L. Modeling team member characteristics for the formation of a multifunctional team in concurrent engineering. IEEE Transactions on Engineering Management, IEEE, v. 51, n. 2, p. 111–124, 2004.
FURNHAM, A. Myers-briggs type indicator (mbti). In: . Encyclopedia of Personality and Individual Differences. Cham: Springer International Publishing, 2020. p. 3059–3062. Dispon ́ıvel em: 〈https://doi.org/10.1007/978-3-319-24612-3 50〉.
COE, C. K. The mbti: Potential uses and misuses in personnel administration. Public Personnel Management, SAGE Publications Sage CA: Los Angeles, CA, v. 21, n. 4, p. 511–522, 1992.
BOYLE, G. J. Myers-briggs type indicator (mbti): some psychometric limitations. Australian Psychologist, Wiley Online Library, v. 30, n. 1, p. 71–74, 1995.
PITTENGER, D. J. Measuring the mbti. . . and coming up short. Journal of Career Planning and Employment, v. 54, n. 1, p. 48–52, 1993.
MARTINEZ-MIRANDA, J.; ALDEA, A. Emotions in human and artificial intelligence. Computers in Human Behavior, Elsevier, v. 21, n. 2, p. 323–341, 2005.
CALEGARI, R. et al. Logic-based technologies for intelligent systems: State of the art and perspectives. Information, Multidisciplinary Digital Publishing Institute, v. 11, n. 3, p. 167, 2020.
CONTE, R.; GILBERT, N.; SICHMAN, J. S. MAS and social simulation: A suitable commitment. In: SPRINGER. International Workshop on Multi-Agent Systems and Agent-Based Simulation. [S.l.], 1998. p. 1–9.
LUKE, S. et al. Mason: A multiagent simulation environment. Simulation, Sage Publications Sage CA: Thousand Oaks, CA, v. 81, n. 7, p. 517–527, 2005.
NORLING, E.; SONENBERG, L. Creating interactive characters with bdi agents. 02 2004.
BRATMAN, M. E.; ISRAEL, D. J.; POLLACK, M. E. Plans and resource-bounded practical reasoning. Computational intelligence, Wiley Online Library, v. 4, n. 3, p. 349–355, 1988.
PADGHAM, L.; LAMBRIX, P. Agent capabilities: Extending bdi theory. In: AAAI/IAAI. [S.l.: s.n.], 2000. p. 68–73.
RAO, A. S.; GEORGEFF, M. P. et al. Bdi agents: from theory to practice. In: Icmas. [S.l.: s.n.], 1995. v. 95, p. 312–319.
DIENER, E.; LUCAS, R. E. Personality traits. In: General psychology: Required reading. [S.l.: s.n.], 2019. p. 278.
PANKSEPP, J. Affective Neuroscience, the Foundations of Human and Animal Emotions. Oxford University Press, USA, 1998. Dispon ́ıvel em: 〈http://gen.lib.rus.ec/book/index.php?md5=395084975cf51beb09043ea2451c31f7〉.
PEREIRA, D. et al. Towards an architecture for emotional bdi agents. In: IEEE. 2005 portuguese conference on artificial intelligence. [S.l.], 2005. p. 40–46.
SALVIT, J.; SKLAR, E. Modulating agent behavior using human personality type. In: Proceedings of the Workshop on Human-Agent Interaction Design and Models (HAIDM) at Autonomous Agents and MultiAgent Systems (AAMAS). [S.l.: s.n.], 2012. p. 145–160.
SALVIT, J. Extending BDI with Agent Personality Type. Tese (Doutorado) — The City University of New York, 2012.
MENEGON, L.; CASADO, T. O contrato psicol ́ogico como ferramenta para a gest ̃ao de pessoas. Revista De Administraçao, v. 41, n. 2, p. 125–135, 6 2006. Dispon ́ıvel em: 〈http://www.periodicos.usp.br/rausp/article/view/44393〉.
CASTKA, P. et al. Factors affecting successful implementation of high performance teams. Team Performance Management: An International Journal, MCB UP Ltd, 2001.
SHARP, J. M. et al. Continuous organisational learning through the development of high performance teams. In: ICSTM. [S.l.: s.n.], 2000.
TRAN, T.; COHEN, R. A learning algorithm for buying and selling agents in electronic marketplaces. In: SPRINGER. Conference of the Canadian Society for Computational Studies of Intelligence. [S.l.], 2002. p. 31–43.
DELOACH, S. A. Modeling organizational rules in the multi-agent systems engineering methodology. In: SPRINGER. Conference of the Canadian Society for Computational Studies of Intelligence. [S.l.], 2002. p. 1–15.
XU, H.; SHATZ, S. M. An agent-based petri net model with application to seller/buyer design in electronic commerce. In: IEEE. Proceedings 5th International Symposium on Autonomous Decentralized Systems. [S.l.], 2001. p. 11–18.