Normalidade de variáveis: métodos de verificação e comparação de alguns testes não-paramétricos por simulação
DOI:
https://doi.org/10.22491/2357-9730.29874Keywords:
histograma, QQ-plot, distribuição normal, normalidade, testes de aderência, testes de normalidadeAbstract
Introdução: Os principais testes estatísticos têm como suposição a normalidade dos dados, que deve ser verificada antes da realização das análises principais. Objetivo: Revisar as técnicas de verificação da normalidade dos dados e comparar alguns testes de aderência à normalidade para diferentes distribuições de origem e tamanho amostral. Metodologia: Através da simulação de cinco distribuições (Normal, t-student, Qui-Quadrado, Gama e Exponencial) e seis tamanhos amostrais (10, 30, 50, 100, 500 e 1000) foram simulados 5000 amostras de cada par distribuição-tamanho amostral e realizados os testes Qui-quadrado, Kolmogorov-Smirnov, Lilliefors, Shapiro-Wilk, Shapiro-Francia, Cramer-von Mises, Anderson-Darling e Jarque-Bera. Resultados: Os resultados obtidos mostram uma clara superioridade dos testes Shapiro-Francia e Shapiro-Wilk, com percentuais de acerto de 72,41% e 72,15%, respectivamente. Entre os piores resultados encontramos o Kolmogorov-Smirnov e Qui-Quadrado, com percentual de acerto de 44,78% e 61,58%, respectivamente. Conclusões: Para amostras pequenas recomenda-se que sejam utilizados procedimentos não paramétricos diretamente para a análise, em função da baixa performance dos testes de aderência à normalidade, dado o baixo percentual de acertos. Para amostras maiores, recomenda-se o uso dos testes Shapiro-Francia ou Shapiro-Wilk.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).