Update of clinical aspects of knee osteoarthritis: data mining from NMR-based metabolomics of synovial fluid
DOI:
https://doi.org/10.22491/2357-9730.131628Palavras-chave:
metabolomics, metabolic syndrome, osteoarthritis, synovial fluidResumo
Introduction: Knee osteoarthritis (OA) is a prevalent disease which leads to progressive disability. There is increasing evidence of the association between OA with metabolic syndrome. Metabolomics emerges as a promising tool for investigation of this connection. The goal of this study was to correlate the metabolic profile of synovial fluid of patients with and without knee osteoarthritis with clinical factors related to the development of metabolic syndrome (MetS) based on the reanalysis of a patient’s database from our previous study.
Methods: Patients were divided in two groups: without osteoarthritis (OA), who underwent knee arthroscopy (n = 8; K-L Grade 0) and with knee OA (KOA), who underwent total knee arthroplasty surgery (n = 26, K-L Grades 3 and 4). From a database of synovial fluid metabolomic analysis by nuclear magnetic resonance, clinical data were collected from medical records, including age, sex, height and weight, and fasting blood glucose levels. Then, multivariate analysis was performed to identify the possibility of distinguishing different subgroups of patients based on clinical factors potentially associated with osteoarthritis and MetS.
Results: Metabolic analysis was able to differentiate patients without osteoarthritis from those with osteoarthritis, based on metabolic profile, with glycerol being the increased metabolite in the group of patients with osteoarthritis. However, metabolomics was not able to classify patients into subgroups according to blood glucose ranges, body mass index and by age.
Conclusion: In a population with osteoarthritis, metabolic analysis evidences a slightly different profile in the analysis by age and BMI, or age and glycaemia.
Keywords: Metabolomics; Metabolic syndrome; Osteoarthritis; Synovial fluid.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Categorias
Licença
Copyright (c) 2024 Mario Correa Netto Pacheco Junior, Ramon Pinheiro Aguiar, Diego Pinheiro Aguiar, Gilson Costa, Eduardo Branco de Sousa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).