Streptococcus mutans e seu metabolismo a nível molecular no contexto ecológico da doença cárie

Autores

DOI:

https://doi.org/10.22456/2177-0018.118914

Palavras-chave:

Streptococcus mutans, Metabolismo, Cárie dentária, Microbiota, Fatores de virulência

Resumo

Objetivo: Durante décadas, o Streptococcus mutans foi considerado o principal agente etiológico da doença cárie. Esta revisão apresentará seu histórico e metabolismo a nível molecular. Ao entender as vias metabólicas do S.mutans envolvidas no  desenvolvimento de lesões cariosas, será possível desenvolver novos métodos de modulação de biofilmes no controle da doença cárie e elucidar a necessidade de continuar pesquisando essa bactéria. Revisão de literatura: Embora o S. mutans não constitua uma proporção significativa na colonização da microbiota bucal da dentição hígida, essa proporção aumenta quando há acidificação contínua do biofilme, associada ao excesso de carboidratos na dieta do hospedeiro. Isso ocorre devido a um conjunto de fatores de virulência, tais como, adesão, formação de biofilme, acidogenicidade, aciduricidade, atividades de proteases, produção de mutacinas e vias de transdução de sinal. Cada uma dessas propriedades, coordenadamente, alteram a ecologia do biofilme dental. Discussão: Ainda é relevante entender o metabolismo do S. mutans como microrganismo modelo em lesões cariosas devido a seus inúmeros fatores de virulência. Porém, no contexto da doença cárie como uma disbiose, estratégias terapêuticas antimicrobianas, mais especificamente anti-S.mutans, voltadas para a eliminação do microrganismo, podem não ser a chave do controle da doença cárie, enquanto a modulação do microbioma poderá se tornar o futuro das clínicas odontológicas. Conclusão: Biofilmes associados a doença cárie compreendem um ecossistema diverso, sugerindo uma etiologia polimicrobiana, porém, estudos futuros que visem à prospecção, ao desenvolvimento e à inter-relação do S. mutans com outros microrganismos e com o hospedeiro humano ainda são justificados a fim de desvendar a transição ‘homeostase-disbiose’.

Downloads

Não há dados estatísticos.

Referências

Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe. 2009;6(1):10-21.

Shanmugam Kt, Masthan Kmk, Balachander N, Sudha J, Sarangarajan R. Dental caries vaccine: a possible option? J Clin Diagn Res. 2013;7(6):1250-3.

Zhang S. Dental caries and vaccination strategy against the major cariogenic pathogen, Streptococcus mutans. Curr Pharm Biotechnol. 2013;14(11):960-6.

Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA Community Analysis. PLoS One. 2012;7(10):e47722.

Thenisch NL, Bachmann LM, Imfeld T, Leisebach Minder T, Steurer J. Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res. 2006;40(5):366-74.

Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263-71.

Eberl G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 2010;3(5):450-60.

Clarke JK. On the bacterial factor in the ætiology of dental caries. Br J Exp Pathol. 1924;5(3):141-7.

Lemos JA, Quivey RG, Koo H, Abranches J. Streptococcus mutans: a new Gram-positive paradigm? Microbiology (Reading). 2013;159(Pt 3):436-45.

Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980;44(2):331-84.

Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. Isme j. 2014;8(11):2256-71.

Nakano K, Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol. 2009;4(7):891-902.

Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002;99(22):14434-9.

Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1).

Argimón S, Konganti K, Chen H, Alekseyenko AV, Brown S, Caufield PW. Comparative genomics of oral isolates of Streptococcus mutans by in silico genome subtraction does not reveal accessory DNA associated with severe early childhood caries. Infect Genet Evol. 2014;21:269-78.

Liu L, Hao T, Xie Z, Horsman GP, Chen Y. Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans. Sci Rep. 2016;6:37479.

Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, et al. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics. 2009;10:358.

Meng P, Lu C, Zhang Q, Lin J, Chen F. Exploring the genomic diversity and cariogenic differences of Streptococcus mutans strains through pan-genome and comparative genome analysis. Curr Microbiol. 2017;74(10):1200-9.

Cornejo OE, Lefébure T, Bitar PD, Lang P, Richards VP, Eilertson K, et al. Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol. 2013;30(4):881-93.

Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, et al. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One. 2013;8(4):e61358.

Phattarataratip E, Olson B, Broffitt B, Qian F, Brogden KA, Drake DR, et al. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol. 2011;26(3):187-99.

Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (Reading). 2008;154(Pt 11):3247-55.

Do T, Damé-Teixeira N, Naginyte M, Marsh PD. Root surface biofilms and caries. Monogr Oral Sci. 2017;26:26-34.

Petersen FC, Assev S, van der Mei HC, Busscher HJ, Scheie AA. Functional variation of the antigen I/II surface protein in Streptococcus mutans and Streptococcus intermedius. Infect Immun. 2002;70(1):249-56.

Banas JA. Virulence properties of Streptococcus mutans. Front Biosci. 2004;9:1267-77.

Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69-86.

Guo L, Hu W, He X, Lux R, McLean J, Shi W. Investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein. PLoS One. 2013;8(2):e57182.

Ren Z, Cui T, Zeng J, Chen L, Zhang W, Xu X, et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother. 2016;60(1):126-35.

Klahan P, Okuyama M, Jinnai K, Ma M, Kikuchi A, Kumagai Y, et al. Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides. Biosci Biotechnol Biochem. 2018;82(9):1480-7.

Nagasawa R, Sato T, Senpuku H. Raffinose induces biofilm formation by Streptococcus mutans in low concentrations of sucrose by increasing production of extracellular DNA and fructan. Appl Environ Microbiol. 2017;83(15):e00869-17.

Rozen R, Steinberg D, Bachrach G. Streptococcus mutans fructosyltransferase interactions with glucans. FEMS Microbiol Lett. 2004;232(1):39-43.

Wexler DL, Penders JE, Bowen WH, Burne RA. Characteristics and cariogenicity of a fructanase-defective Streptococcus mutants strain. Infect Immun. 1992;60(9):3673-81.

Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med. 2003;14(2):89-99.

Nogueira RD, Alves AC, Napimoga MH, Smith DJ, Mattos-Graner RO. Characterization of salivary immunoglobulin A responses in children heavily exposed to the oral bacterium Streptococcus mutans: influence of specific antigen recognition in infection. Infect Immun. 2005;73(9):5675-84.

Perry JA, Cvitkovitch DG, Lévesque CM. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett. 2009;299(2):261-6.

Wu J, Xi C. Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl Environ Microbiol. 2009;75(16):5390-5.

de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res. 2000;34(6):486-90.

Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50(4):353-80.

Carlsson J, Griffith CJ. Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol. 1974;19(12):1105-9.

Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol. 2010;5(3):403-17.

May A, Brandt BW, El-Kebir M, Klau GW, Zaura E, Crielaard W, et al. metaModules identifies key functional subnetworks in microbiome-related disease. Bioinformatics. 2016;32(11):1678-85.

Russell RR, Aduse-Opoku J, Sutcliffe IC, Tao L, Ferretti JJ. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992;267(7):4631-7.

Busuioc M, Mackiewicz K, Buttaro BA, Piggot PJ. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol. 2009;191(23):7315-22.

Burne RA. Oral streptococci... products of their environment. J Dent Res. 1998;77(3):445-52.

Fozo EM, Quivey RG, Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol. 2004;70(2):929-36.

Bender GR, Sutton SV, Marquis RE. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun. 1986;53(2):331-8.

Liu Y, Burne RA. Multiple two-component systems of Streptococcus mutans regulate agmatine deiminase gene expression and stress tolerance. J Bacteriol. 2009;191(23):7363-6.

Lemme A, Sztajer H, Wagner-Döbler I. Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans. BMC Microbiol. 2010;10:58.

Sheng J, Marquis RE. Malolactic fermentation by Streptococcus mutans. FEMS Microbiol Lett. 2007;272(2):196-201.

Baker JL, Faustoferri RC, Quivey RG, Jr. Acid-adaptive mechanisms of Streptococcus mutans-the more we know, the more we don't. Mol Oral Microbiol. 2017;32(2):107-17.

Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972;11(19):3610-8.

Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43-81.

Jayaraman GC, Penders JE, Burne RA. Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol. 1997;25(2):329-41.

Diaz-Torres ML, Russell RR. HtrA protease and processing of extracellular proteins of Streptococcus mutans. FEMS Microbiol Lett. 2001;204(1):23-8.

Vickerman MM, Mather NM, Minick PE, Edwards CA. Initial characterization of the Streptococcus gordonii htpX gene. Oral Microbiol Immunol. 2002;17(1):22-31.

Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17.

Hamada S, Ooshima T. Production and properties of bacteriocins (mutacins) from Streptococcus mutans. Arch Oral Biol. 1975;20(10):641-8.

Qi F, Chen P, Caufield PW. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol. 2000;66(8):3221-9.

Novák J, Caufield PW, Miller EJ. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol. 1994;176(14):4316-20.

Qi F, Chen P, Caufield PW. Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol. 1999;65(9):3880-7.

Qi F, Chen P, Caufield PW. The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol. 2001;67(1):15-21.

Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother. 2005;49(2):541-8.

Hossain MS, Biswas I. An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol. 2012;194(21):5886-96.

Parrot M, Caufield PW, Lavoie MC. Preliminary characterization of four bacteriocins from Streptococcus mutans. Can J Microbiol. 1990;36(2):123-30.

Grönroos L, Saarela M, Mättö J, Tanner-Salo U, Vuorela A, Alaluusua S. Mutacin production by Streptococcus mutans may promote transmission of bacteria from mother to child. Infect Immun. 1998;66(6):2595-600.

Lamy MC, Zouine M, Fert J, Vergassola M, Couve E, Pellegrini E, et al. CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol. 2004;54(5):1250-68.

Chong P, Drake L, Biswas I. Modulation of covR expression in Streptococcus mutans UA159. J Bacteriol. 2008;190(13):4478-88.

Zhang K, Ou M, Wang W, Ling J. Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochem Biophys Res Commun. 2009;379(4):933-8.

de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun. 2000;68(9):4839-49.

Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol. 2002;184(10):2699-708.

Ahn SJ, Wen ZT, Burne RA. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun. 2006;74(3):1631-42.

Belda-Ferre P, Williamson J, Simón-Soro Á, Artacho A, Jensen ON, Mira A. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497-507.

Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260-70.

Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013;92(7):616-21.

Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, et al. The oral metagenome in health and disease. Isme j. 2012;6(1):46-56.

Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol. 2014;64(Pt 1):60-5.

Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genomics. 2014;15:311.

Solbiati J, Frias-Lopez J. Metatranscriptome of the oral microbiome in health and disease. J Dent Res. 2018;97(5):492-500.

Simón-Soro A, Guillen-Navarro M, Mira A. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol. 2014;6:25443.

Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717-25.

Wassel MO, Khattab MA. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res. 2017;8(4):387-92.

Huang X, Palmer SR, Ahn SJ, Richards VP, Williams ML, Nascimento MM, et al. A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans. Appl Environ Microbiol. 2016;82(7):2187-201.

Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM. Second era of OMICS in caries research: moving past the phase of disillusionment. J Dent Res. 2017;96(7):733-40.

Downloads

Publicado

2022-09-15

Como Citar

Silva Bittencourt, P. F., de Brito Barbosa, C., & Damé-Teixeira, N. (2022). Streptococcus mutans e seu metabolismo a nível molecular no contexto ecológico da doença cárie. Revista Da Faculdade De Odontologia De Porto Alegre, 63(1), 106–120. https://doi.org/10.22456/2177-0018.118914

Edição

Seção

Revisão de literatura