Fusion of Satellite and Drone Images for Identifying Water Bodies

Authors

DOI:

https://doi.org/10.22456/2175-2745.143523

Keywords:

Image Fusion, Remote Sensing, Drone, Riverine Systems, High Resolution

Abstract

Mapping areas with water bodies is crucial for monitoring water systems and resource management, as well as for guiding urban expansion and land-use planning, thus contributing to sustainable resource management, flood prevention, and the conservation of aquatic ecosystems. While satellite images offer broad territorial coverage, drones provide high spatial resolution of the Earth's surface. In this research, the Pulse Coupled Neural Network (PCNN) [1] image fusion method and the GDAL Pansharpening method, the latter being available in QGIS, were compared to determine which is more effective in merging images to highlight water surface areas in a case study, combining the spectral coverage of satellites with the precision of drones. The implemented PCNN model was able to overcome QGIS Pansharpening method, which is based on Brovey algorithm, obtaining better metrics. This study of drone and satellite image fusion has shown to be a promising approach to overcome the limitations of these technologies when used individually.

Downloads

Download data is not yet available.

References

LIU, H.; LIU, M.; LI, D.; ZHENG, W.; YIN, L.; WANG, R. (2022). Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing. Electronics, v. 11, n. 20, 2022. Available at: ⟨https://doi.org/10.3390/electronics11203264⟩.

CASTRO, A. C. V. de; ALVIM, A. T. B. Urbanização e gestão de riscos hidrológicos em São Paulo. Cad. Metrop., São Paulo, v. 24, n. 54, pp. 669-695, maio/ago 2022. Available at: ⟨http://dx.doi.org/10.1590/2236-9996.2022-5410⟩.

FIGUEIREDO, A. P. S. Determinação da mancha de inundação do município de Itajubá na enchente de janeiro/2000. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 11., 2003, Belo Horizonte. Anais... INPE, 2003. p. 1791-1794. CD-ROM, On-line. ISBN 85-17-00017-X. Available at: ⟨http://marte.dpi.inpe.br/col/ltid.inpe.br/sbsr/2002/11.14.15.59/doc/14_193.pdf⟩.

HUANG, C.; CHEN, Y.; WU, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, v. 56, p. 333–360, 2018. Available at: ⟨https://doi.org/10.1029/2018RG000598⟩.

MARCUS, W. A.; FONSTAD, M. A. Remote Sensing of Rivers: New Advances and Prospects. Bioscience, 2010. Available at: ⟨https://sci-hub.se/10.1002/esp.2094⟩.

YU, D.; FANG, C. Urban Remote Sensing with Spatial Big Data. Encyclopedia. Available online: ⟨https://encyclopedia.pub/entry/43039⟩.

DAGNE, S. S.; HIRPHA, H. H.; TEKOYE, A. T. et al. Fusion of Sentinel-1 SAR and Sentinel-2 MSI data for accurate Urban land use-land cover classification in Gondar City, Ethiopia. Environ Syst Res, v. 12, n. 1, 2023. Available at: ⟨https://doi.org/10.1186/s40068-023-00324-5⟩.

CASAGLI, N.; FRODELLA, W.; MORELLI, S. et al. Spaceborne, UAV and ground-based remote sensing techniques for environmental monitoring, urban planning and disaster detection. Geoenviron Disasters, v. 4, n. 1, 2017. Available at: ⟨https://doi.org/10.1186/s40677-017-0073-1⟩.

VIEIRA, S. R.; TONELI, C. A. Z.; ACERBI JR., F. W. A.; CARVALHO, L. M. T. Avaliação de transformadas wavelets para fusão de imagens SPOT 4 e comparação de classificações de uma imagem fusionada e de uma imagem SPOT 5. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13., 2007, Florianópolis. Anais... INPE, 2007. p. 6265-6272. Available at: ⟨http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2006/11.15.22.26/doc/6265-6272.pdf⟩.

SOARES, R. B.; SOARES, C. B. S. S.; COSTA, J. A. L. da; COSTA, S. dos S. Aplicação de técnica de fusão em imagens Landsat 8/OLI. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17., 2015, João Pessoa-PB. Anais... INPE, 2015. p. 4836-4843. Available at: ⟨http://www.dsr.inpe.br/sbsr2015/files/p0944.pdf⟩.

QGIS DOCUMENTATION. QGIS Training Manual. Available at: ⟨https://docs.qgis.org/3.28/en/docs/training_manual/⟩.

WANG, T. W. H. P. Pansharpening by Convolutional Neural Network. GitHub. Source code, 2020. Available at: ⟨https://github.com/ThomasWangWeiHong/Pansharpening-by-Convolutional-Neural-Network⟩.

SCHWAB, M. Simplistic water body masking with dynamic Otsu thresholding. GitHub. Source code, 2023. Available at: ⟨https://github.com/MelissaSchwab/Simplistic-water-body-masking-with-dynamic-Otsu-thresholding⟩.

BILLSON, J.; ISLAM, M. S.; SUN, X.; CHENG, I. Water Body Extraction from Sentinel-2 Imagery with Deep Convolutional Networks and Pixelwise Category Transplantation. Remote Sens., v. 15, n. 1, 2023. Available at: ⟨https://doi.org/10.3390/rs15051253⟩.

NOBRE, C.; YOUNG, A.; ORSINI, J.; SALDIVA, P.; NOBRE, A.; OGURRA, A.; THOMAZ, O.; VALVERDE, M.; PÁRRAGA, G.; SILVA, G.; SILVEIRA, A.; RODRIGUES, G. Vulnerabilidades das megacidades brasileiras às mudanças climáticas: Região Metropolitana de São Paulo - Relatório Final, 2011. Available at: ⟨https://www.researchgate.net/publication/264383509_Vulnerabilidades_das_megacidades_brasileiras_as_mudancas_climaticas_Regiao_Metropolitana_de_Sao_Paulo_-_Relatorio_Final⟩.

U.S. GEOLOGICAL SURVEY. Landsat 8. Disponível em: ⟨https://earthexplorer.usgs.gov/⟩.

PORTAL GEOSAMPA. Sistema de Mapas da Cidade de São Paulo. Secretaria Municipal de Urbanismo e Licenciamento. Available at: ⟨https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/SBC.aspx⟩.

KURBAN, T. Region-based multispectral fusion method for remote sensing images using differential search algorithm and IHS transform. Expert Systems with Applications, v. 189, 2022. Available at: ⟨https://doi.org/10.1016/j.eswa.2021.116135⟩.

RAFI, N.; RIVAS, P. A Review of Pulse-Coupled Neural Network Applications in Computer Vision and Image Processing. arXiv, June 2024. Available at: ⟨https://doi.org/10.48550/arXiv.2406.00239⟩.

RASTERIO. Python API Reference — Rasterio documentation. Available at: ⟨https://rasterio.readthedocs.io/en/latest/⟩.

Downloads

Published

2025-02-20

How to Cite

Paula Barros, A., Jussara dos Santos, E., Kristen da Silva Pedro, F., Augusto Mendes Lemes, D., Picolo, J., Guilherme Ribeiro Sales, … Semprebom Bezerra, C. (2025). Fusion of Satellite and Drone Images for Identifying Water Bodies. Revista De Informática Teórica E Aplicada, 32(1), 121–127. https://doi.org/10.22456/2175-2745.143523

Issue

Section

WVC2024

Most read articles by the same author(s)

Similar Articles

<< < 15 16 

You may also start an advanced similarity search for this article.