Fusion of Satellite and Drone Images for Identifying Water Bodies
DOI:
https://doi.org/10.22456/2175-2745.143523Keywords:
Image Fusion, Remote Sensing, Drone, Riverine Systems, High ResolutionAbstract
Mapping areas with water bodies is crucial for monitoring water systems and resource management, as well as for guiding urban expansion and land-use planning, thus contributing to sustainable resource management, flood prevention, and the conservation of aquatic ecosystems. While satellite images offer broad territorial coverage, drones provide high spatial resolution of the Earth's surface. In this research, the Pulse Coupled Neural Network (PCNN) [1] image fusion method and the GDAL Pansharpening method, the latter being available in QGIS, were compared to determine which is more effective in merging images to highlight water surface areas in a case study, combining the spectral coverage of satellites with the precision of drones. The implemented PCNN model was able to overcome QGIS Pansharpening method, which is based on Brovey algorithm, obtaining better metrics. This study of drone and satellite image fusion has shown to be a promising approach to overcome the limitations of these technologies when used individually.
Downloads
References
LIU, H.; LIU, M.; LI, D.; ZHENG, W.; YIN, L.; WANG, R. (2022). Recent Advances in Pulse-Coupled Neural Networks with Applications in Image Processing. Electronics, v. 11, n. 20, 2022. Available at: ⟨https://doi.org/10.3390/electronics11203264⟩.
CASTRO, A. C. V. de; ALVIM, A. T. B. Urbanização e gestão de riscos hidrológicos em São Paulo. Cad. Metrop., São Paulo, v. 24, n. 54, pp. 669-695, maio/ago 2022. Available at: ⟨http://dx.doi.org/10.1590/2236-9996.2022-5410⟩.
FIGUEIREDO, A. P. S. Determinação da mancha de inundação do município de Itajubá na enchente de janeiro/2000. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 11., 2003, Belo Horizonte. Anais... INPE, 2003. p. 1791-1794. CD-ROM, On-line. ISBN 85-17-00017-X. Available at: ⟨http://marte.dpi.inpe.br/col/ltid.inpe.br/sbsr/2002/11.14.15.59/doc/14_193.pdf⟩.
HUANG, C.; CHEN, Y.; WU, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Reviews of Geophysics, v. 56, p. 333–360, 2018. Available at: ⟨https://doi.org/10.1029/2018RG000598⟩.
MARCUS, W. A.; FONSTAD, M. A. Remote Sensing of Rivers: New Advances and Prospects. Bioscience, 2010. Available at: ⟨https://sci-hub.se/10.1002/esp.2094⟩.
YU, D.; FANG, C. Urban Remote Sensing with Spatial Big Data. Encyclopedia. Available online: ⟨https://encyclopedia.pub/entry/43039⟩.
DAGNE, S. S.; HIRPHA, H. H.; TEKOYE, A. T. et al. Fusion of Sentinel-1 SAR and Sentinel-2 MSI data for accurate Urban land use-land cover classification in Gondar City, Ethiopia. Environ Syst Res, v. 12, n. 1, 2023. Available at: ⟨https://doi.org/10.1186/s40068-023-00324-5⟩.
CASAGLI, N.; FRODELLA, W.; MORELLI, S. et al. Spaceborne, UAV and ground-based remote sensing techniques for environmental monitoring, urban planning and disaster detection. Geoenviron Disasters, v. 4, n. 1, 2017. Available at: ⟨https://doi.org/10.1186/s40677-017-0073-1⟩.
VIEIRA, S. R.; TONELI, C. A. Z.; ACERBI JR., F. W. A.; CARVALHO, L. M. T. Avaliação de transformadas wavelets para fusão de imagens SPOT 4 e comparação de classificações de uma imagem fusionada e de uma imagem SPOT 5. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13., 2007, Florianópolis. Anais... INPE, 2007. p. 6265-6272. Available at: ⟨http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2006/11.15.22.26/doc/6265-6272.pdf⟩.
SOARES, R. B.; SOARES, C. B. S. S.; COSTA, J. A. L. da; COSTA, S. dos S. Aplicação de técnica de fusão em imagens Landsat 8/OLI. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17., 2015, João Pessoa-PB. Anais... INPE, 2015. p. 4836-4843. Available at: ⟨http://www.dsr.inpe.br/sbsr2015/files/p0944.pdf⟩.
QGIS DOCUMENTATION. QGIS Training Manual. Available at: ⟨https://docs.qgis.org/3.28/en/docs/training_manual/⟩.
WANG, T. W. H. P. Pansharpening by Convolutional Neural Network. GitHub. Source code, 2020. Available at: ⟨https://github.com/ThomasWangWeiHong/Pansharpening-by-Convolutional-Neural-Network⟩.
SCHWAB, M. Simplistic water body masking with dynamic Otsu thresholding. GitHub. Source code, 2023. Available at: ⟨https://github.com/MelissaSchwab/Simplistic-water-body-masking-with-dynamic-Otsu-thresholding⟩.
BILLSON, J.; ISLAM, M. S.; SUN, X.; CHENG, I. Water Body Extraction from Sentinel-2 Imagery with Deep Convolutional Networks and Pixelwise Category Transplantation. Remote Sens., v. 15, n. 1, 2023. Available at: ⟨https://doi.org/10.3390/rs15051253⟩.
NOBRE, C.; YOUNG, A.; ORSINI, J.; SALDIVA, P.; NOBRE, A.; OGURRA, A.; THOMAZ, O.; VALVERDE, M.; PÁRRAGA, G.; SILVA, G.; SILVEIRA, A.; RODRIGUES, G. Vulnerabilidades das megacidades brasileiras às mudanças climáticas: Região Metropolitana de São Paulo - Relatório Final, 2011. Available at: ⟨https://www.researchgate.net/publication/264383509_Vulnerabilidades_das_megacidades_brasileiras_as_mudancas_climaticas_Regiao_Metropolitana_de_Sao_Paulo_-_Relatorio_Final⟩.
U.S. GEOLOGICAL SURVEY. Landsat 8. Disponível em: ⟨https://earthexplorer.usgs.gov/⟩.
PORTAL GEOSAMPA. Sistema de Mapas da Cidade de São Paulo. Secretaria Municipal de Urbanismo e Licenciamento. Available at: ⟨https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/SBC.aspx⟩.
KURBAN, T. Region-based multispectral fusion method for remote sensing images using differential search algorithm and IHS transform. Expert Systems with Applications, v. 189, 2022. Available at: ⟨https://doi.org/10.1016/j.eswa.2021.116135⟩.
RAFI, N.; RIVAS, P. A Review of Pulse-Coupled Neural Network Applications in Computer Vision and Image Processing. arXiv, June 2024. Available at: ⟨https://doi.org/10.48550/arXiv.2406.00239⟩.
RASTERIO. Python API Reference — Rasterio documentation. Available at: ⟨https://rasterio.readthedocs.io/en/latest/⟩.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ariane Paula Barros, Elizaˆngela Jussara dos Santos, Fernanda Kristen da Silva Pedro, Cides Semprebom Bezerra, Dimas Augusto Mendes Lemes, Jose ́ Picolo, Guilherme Ribeiro Sales, Valentino Corso

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Autorizo aos editores a publicação de meu artigo, caso seja aceito, em meio eletrônico de acordo com as regras do Public Knowledge Project.