Implementação de Técnica de Identificação de Alarmes de Braços Ferramentas em Centros de Usinagem de Alta Velocidade em Indústria Metal Mecânica: aplicação da Engenharia de Dados em um estudo de caso
DOI:
https://doi.org/10.22456/1983-8026.133398Keywords:
Manutenção, Indústria 4.0, Alarmes, PrediçãoAbstract
Daily we trust manufacturing in a wide range of machine tools to carry out production processes, but eventually machines fail, unless failure modes and breakdowns are predictable. Thus, maintenance engineering initiatives focused on predictive maintenance help estimate when equipment failure will occur. This prediction allows us to plan maintenance in advance, reduce cost, eliminate unplanned downtime, and maximize equipment life.
This engineering came to gain huge emphasis with Industry 4.0 practices, where the use of industrial automation technologies and especially the practices and techniques of data science, allows us to develop intelligent algorithms, which contribute to the real-time analysis of a huge amount of data and from this analysis make the decision of what to do with the equipment.
The system implemented in this work was designed exactly to identify the alarms and the health of a high-speed tool changing system of machining machines, of a combustion cylinder line of a metal mechanical industry.
In order to increase the life span of these components and reduce maintenance costs, a system capable of continuously monitoring them is needed, as well as a system capable of clearly transmitting information about what and where it will be necessary to perform some maintenance. Thus, in this project, besides having to guarantee the machine and system interface, ways of identifying failures and trend relations were elaborated, which provide the prediction of alarms. All this being reported in a panel with information and prognostics in real time, capable of facilitating the decision power in taking actions by the responsible engineers.
Downloads
References
ABBASI, T., LIM, K. H., ROSLI, N. S., ISMAIL, I., IBRAHIM, R. Development of predictive maintenance interface using multiple linear regression. International Conference on Intelligent and Advanced System (ICIAS). IEEE Xplore, Kuala Lumpur, Malaysia, 2018. DOI:10.1109/ICIAS.2018.8540602
ASADI, M., HASHEMI, M., BALAKRISHNAN, N. An overview of some classical models and discussion of the signature-based models of preventive maintenance. Applied Stochastic Models in Business and Industry, Vol. 39, pp. 4–53, 2023. https://doi.org/10.1002/asmb.2679
BALOGH, Z., GATIAL, E., BARBOSA, J., LEITÃO, P., MATEJKA, T. Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing. IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE Xplore, Las Palmas de Gran Canaria, Spain, 2018. DOI: 10.1109/INES.2018.8523969
BRANCO FILHO, G. A organização, o planejamento e o controle da manutenção. Rio de Janeiro: Ciência Moderna, 2008.
BRUCE, P.; BRUCE, A. Estatística Prática para Cientistas de Dados 50 conceitos essenciais. Rio de Janeiro: Alta Books, 2019.
CANITO, A., FERNANDES, M., MOURINHO, J., TOSUN, S., KAYA, K., TURUPCU, A., LAGARES, A., KARABULUT, H., MARREIROS, G. Flexible architecture for data-driven predictive maintenance with support for offline and online machine learning techniques. IECON – 47th Annual Conference of the IEEE Industrial Electronics Society. IEEE Xplore, Toronto, ON, Canada, 2021. DOI: 10.1109/IECON48115.2021.9589230
CHIRON. Manual CEM /CMDA Siemens. Manual do Utilizador. Versão 10-12, 2006.
COHEN, J. Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge, 1988.
CNI – Confederação Nacional das Indústrias. Indústria 4.0: Cinco anos depois / Confederação Nacional da Indústria, Brasília, Sondagem Especial 83, Ano 21, nº 83 – Brasília, 2022.
ELIPSE. 2022. EPM Disponível em < https://www.elipse.com.br/produto/elipse-plant-manager/>. Acesso em: 12 de setembro de 2022.
ELIPSE. 2022. produto disponível em <https://docs.elipse.com.br/products/epm/>. Acesso em: 12 de setembro de 2022.
FÁVERO, L. P.; BELFIORE, P. Manual de Análise de Dados. 1ª ed. [reimpressão]. Editora LTC, Rio de Janeiro, RJ, Brasil, 2021.
HASSAN, E., MASTERS, J., JEONG, K., HEYDARIAN, S., ALISA, M. New industrial Internet of things platform for predictive maintenance in handling heavy equipment. International Conference on Engineering and Emerging Technologies (ICEET). IEEE Xplore, Istanbul, Turkey, 2021. DOI: 10.1109/ICEET53442.2021.9659568
JANTUNEN, E., CAMPOS, J., SHARMA, P., BAGLEE, D. Digitalisation of maintenance. 2nd International Conference on System Reliability and Safety (ICSRS). IEEE Xplore, Milan, Italy 2017. https://doi.org/10.1109/ICSRS.2017.8272846
JOSE, T. M., ZAMEER, R. A novel sensor based approach to predictive maintenance of machines by leveraging heterogeneous computing. IEEE Xplore Sensors, New Delhi, India, 2018. DOI: 10.1109/ICSENS.2018.8589620
KAJKO-MATTSSON, M. A Survey of Documentation Practice within Corrective Maintenance. Empirical Software Engineering, Vol. No. 10, pp. 31–55, 2005. https://doi.org/10.1023/B:LIDA.0000048322.42751.ca
KARDEC, A. e NASCIF, J.. Manutenção Função Estratégica. Rio de Janeiro: Qualitymark, 2001.
KUMARI, R., SAINI, K. Advanced automobile manufacturing: An Industry 4.0. 8th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE Xplore. New Delhi, India, 2021. DOI:10.1109/INDIACom51348.2021.00161
LAFRAIA, J. R. B. Manual de Confiabilidade, Mantenabilidade e Disponibilidade. Rio de Janeiro: Qualitymark, 2001.
LECHEVALIER, D., NARAYANAN, A., RACHURI, S. Towards a domain-specific framework for predictive analytics in manufacturing. IEEE International Conference on Big Data (Big Data). IEEE Xplore, Washington, DC, USA, 2014. DOI: 10.1109/BigData.2014.7004332
MAQBOOL, F., MAHMOOD, H., KHATTAK, H. A. An efficient fault-prediction mechanism for improving yield in Industry 5.0. 24th International Multitopic Conference (INMIC). IEEE Xplore, Islamabad, Pakistan, 2022. DOI: 10.1109/INMIC56986.2022.9972980
MUBARAK, A., ASMELASH, M., AZHARI, A., ALEMU, T., MULUBRHAN, F., SAPTAJI, K. Digital twin enabled Industry 4.0 predictive maintenance under reliability-centred strategy. First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). IEEE Xplore, Trichy, India, 2022. DOI: 10.1109/ICEEICT53079.2022.9768590
POLOTSKI, V., KENNE, J.-P. GHARBI, A. Optimal production and corrective maintenance in a failure‑prone manufacturing system under variable demand. Flexible Services and Manufacturing Journal, Vol. 3, pp. 894–925, 2019. DOI: 10.1007/s10696-019-09337-8
PURNACHAND, K., SHABBEER, Md., SYAMALA RAO, P.N.V. M., BABU, C. M. Predictive maintenance of machines and industrial equipment. 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). IEEE Xplore, Bhopal, India, 2021. DOI: 10.1109/CSNT51715.2021.9509696
RAMANI, B. V., AMITH, C. A., OOMMEN, J. O., BABU, J., PAUL, T., SANKAR, V. Predictive analysis for industrial maintenance automation and optimization using a smart sensor network. International Conference on Next Generation Intelligent Systems (ICNGIS). IEEE Xplore, Kottayam, India, 2016. DOI: 10.1109/ICNGIS.2016.7854004
RAMOS, P.; SANTOS, N.; RABELO, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robotics and Computer-Integrated Manufacturing 34, 2015. https://doi.org/10.1016/j.rcim.2014.12.015
RAO, B. S., SARDA, N. L. Applicability of IEEE maintenance process for corrective maintenance outsourcing - An empirical study. International Conference on Software Maintenance, Proceedings. IEEE Xplore, Montreal, QC, Canada, 2002. DOI: 10.1109/ICSM.2002.1167754
ROMRIELL, A., NICULESCU, R. S., KESSLER, D., KROLL, T. Lessons from deploying predictive analytics on manufacturing shop floor. Annual Reliability and Maintainability Symposium (RAMS). IEEE Xplore, Palm Springs, CA, USA, 2020. DOI: 10.1109/RAMS48030.2020.9153728
SADIKI, S., FACCIO, M., RAMADANY, M., AMGOUZ, D., BOUTAHAR, S. Impact of intelligent wireless sensor network on predictive maintenance cost. 4th International Conference on Optimization and Applications (ICOA). IEEE Xplore, Mohammedia, Morocco, 2018. DOI: 10.1109/ICOA.2018.8370573
SCHMIDT, B., WANG, L. Cloud-enhanced predictive maintenance. International Journal of Advantage in Manufacturing Technology, Vol. 99, pp. 5–13, 2018. https://doi.org/10.1007/s00170-016-8983-8
SINGH, P., AGRAWAL, S., CHAKRABORTY, A. Multi-classifier predictive maintenance strategy for a manufacturing plant. International Conference on Maintenance and Intelligent Asset Management (ICMIAM), IEEE Xplore, Ballarat, Australia, 2021. DOI: 10.1109/ICMIAM54662.2021.9715224
TON, B., BASTEN, R., BOLTE, J., BRAAKSMA, J., Di BUCCHIANICO, A., CALSEYDE, P., GROOTEMAN, F., HESKES, T., JANSEN, N., TEEUW, W., TINGA, T., STOELINGA, M. PrimaVera: Synergising predictive maintenance. Applied Sciences, 10, 8348, 2020.
https://doi.org/10.3390/app10238348
VINH, T. Q., HUY, N. T. Predictive maintenance IoT system for industrial machines using random forest regressor. International Conference on Advanced Computing and Analytics (ACOMPA). IEEE Xplore, Ho Chi Minh City, Vietnam, 2022. DOI: 10.1109/ACOMPA57018.2022.00020
WANG, N., JIN, Y. C., MA, L., LIAO, H. A computational method for finding the availability of opportunistically maintained multi-state systems with non-exponential distributions. IISE Transactions, Vol. 52, No. 9, pp. 1047–1061, 2020. DOI: 10.1080/24725854.2019.1688897
WELLSANDT, S., KLEIN, K., HRIBERNIK, K., LEWANDOWSKI, M., BOUSDEKIS, A., MENTZAS, G., THOBEN, K.-D. Towards using digital intelligent assistants to put humans in the loop of predictive maintenance systems. ScienceDirect, IFAC PapersOnLine 54-1, pp. 49–54, 2021. https://doi.org/10.1016/j.ifacol.2021.08.005
WU, D, JENNINGS, C., TERPENNY, J., KUMARA, S. Cloud-based machine learning for predictive analytics: Tool wear prediction in milling. IEEE International Conference on Big Data (Big Data). IEEE Xplore, Washington, DC, USA, 2016. DOI: 10.1109/BigData.2016.7840831
YU, W., DILLON, T., MOSTAFA, F., RAHAYU, W., LIU, Y. A global manufacturing Big Data ecosystem for fault Detection in predictive maintenance. IEEE Transactions on Industrial Informatics, Vol. 16, No. 1, January, 2020. DOI: 10.1109/TII.2019.2915846
YU, W., LIU, Y., DILLON, T., RAHAYU, W. Edge computing-assisted IoT framework with an autoencoder for fault detection in manufacturing predictive maintenance. IEEE Transactions on Industrial Informatics, Vol.19, Issue: 4, April, pp. 5701 – 5710, 2023. DOI: 10.1109/TII.2022.3178732