Potential of atmospheric CO2 capture by enhanced weathering in Mato Grosso: case study
DOI:
https://doi.org/10.22456/1807-9806.143683Keywords:
rock powder, mineral input, agrogeologyAbstract
The use of soil remineralizers (REM), a practice grounded in ancient agricultural techniques, is experiencing a resurgence as a sustainable and complementary alternative to soluble chemical fertilizers. These REM, rich in multiple nutrients, gradually release essential elements necessary for plant growth, emulating the natural regeneration processes of soil. In addition to their effectiveness, this approach offers lower costs and added benefits, such as enhanced crop quality and maintained or increased agricultural yield. In Brazil, where agriculture is a fundamental pillar of the economy, research and regulation of REM have progressed significantly. As of July 2024, this advancement has registered 66 products with the Ministry of Agriculture. As the impacts of the greenhouse effect intensify, there is an urgent need for strategies to reduce greenhouse gas (GHG) emissions. Agriculture, a significant contributor to CO2 emissions, is particularly impactful in Brazil. Thus, adopting sustainable management practices is essential for making both competitive and environmentally sustainable agriculture. In this context, using REM within the framework of Enhanced Weathering (EW) emerges as a promising method for capturing atmospheric CO2, promoting plant growth, and enhancing carbon sequestration in the soil. This study examined two geological sites in the state of Mato Grosso: the Colíder Group and Planalto da Serra Alkaline Complex. The findings indicate that the samples from these sites have substantial potential for atmospheric CO2 removal, with values ranging from 39.53 kg CO2 t-1 to 496.16 kg CO2 t-1. This suggests that EW is an effective climate change mitigation technique and that the rocks studied play a vital role in this process. In the future, EW could be an integral component of a broader strategy to control GHG emissions and combat climate change, focusing on using rocks with properties similar to those analyzed in this research.
Downloads
References
Aitken, M.; Amann, M.; Anderson, K.; Van Asselt, H.; Bertram, C.; Bosetti, V.; Broderick, M.; Victor, D.; Voss, J.; Zhang, J. 2022. Ethical considerations of negative emission technologies. Nature Climate Change, 12(1): 21-29.
ANDA – Associação Nacional para a Difusão de Adubos. 2015. Anuário estatístico 2015. 175 p.
Berner, R.A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(4): 339-376. https://doi.org/10.2475/ajs.291.4.339 DOI: https://doi.org/10.2475/ajs.291.4.339
Blum, A.E. & Stillings, L.L. 1995. Feldspar dissolution kinetics. In: White, A.F.; Brantley, S.L. (Eds.). Chemical weathering rates in silicate minerals. Reviews in Mineralogy, 31, Mineralogical Society of America. p. 291-351. DOI: https://doi.org/10.1515/9781501509650-009
Brantley, S.L. & Chen, Y. 1995. Chemical weathering rates of pyroxenes and amphiboles. In: White, A.F.; Brantley, S.L. (Eds.). Chemical weathering rates in silicate minerals. Reviews in Mineralogy, 31, Mineralogical Society of America. p. 119-172. DOI: https://doi.org/10.1515/9781501509650-006
Cerri, C.E.P. 2022. Sequestro de Carbono no Solo. Revista Novo Solo, Ano 1, Edição 1, ABREFEN: 33-37.
Cerri, C.C. & Cerri, C.E.P. 2007. Agricultura e aquecimento global. Boletim Informativo – SBCS, 23: 40-44.
Churchman, G.J.; Singh, M.; Schapel, A.; Sarkar, B.; Bolan, N. 2020. Clay Minerals as the key to the Sequestration of Carbon in Soils. Science of the Total Environment, 739: 138488. https://doi.org/10.1016/j.scitotenv.2020.138488 DOI: https://doi.org/10.1007/s42860-020-00071-z
Deepthy, R. & Balakrishnan, S. 2005. Climatic control on clay mineral formation: evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science, 114: 545-556. https://doi.org/10.1007/BF02702030 DOI: https://doi.org/10.1007/BF02702030
Ebelmen, J. 1845. Sur les produits de la décomposition des especes minérales de famille des silicates. Ann. Mines., 7: 3-66.
FGV - Fundação Getúlio Vargas . 2023. Relatório de seção. Power BI. Disponível em: https://app.powerbi.com/view?r=eyJrIjoiNTZkNjc0NTAtYTVjMi00OTc1LWJhZTEtYWQxY2M0YzdjMGM0IiwidCI6ImRlNGNlMThjLTUyMTQtNDA2OS04MTg4LTFiOGZiNDJlM2NjZSJ9&pageName=ReportSection8563bbab36110c9ec008.
Franke, W.A. & Teschner-Steinhardt, R. 1994. An experimental approach to the sequence of the stability of rock-forming minerals towards chemical stability. Catena, 21(2–3): 279-290. https://doi.org/10.1016/0341-8162(94)90018-3 DOI: https://doi.org/10.1016/0341-8162(94)90018-3
Goldich, S.S. 1938. A study in rock weathering. Journal of Geology, 46(1): 1097-1103. https://doi.org/10.1086/624619 DOI: https://doi.org/10.1086/624619
Hartmann, J. & Kempe, S. 2008. What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale? Naturwissenshcaften, 95: 1159-1164. https://doi.org/10.1007/s00114-008-0434-4 DOI: https://doi.org/10.1007/s00114-008-0434-4
Hartmann, J.; Weste, A.J.; Renforth, P.; Köhler, P.; Rocha, C.L.; Wolfgladrow, D.A.; Dürr, H.H.; Scheffran, J. 2013. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients and mitigate ocean acidification. Reviews of Geophysics, 51(2): 113-149. https://doi.org/10.1002/rog.20004 DOI: https://doi.org/10.1002/rog.20004
IPCC - Intergovernmental Panel on Climate Change. 2001. Climate change 2001: the scientific basis. Cambridge, UK: Cambridge University Press.
Jorat, M.E.; Goddard, M.A.; Manning, P.; Lau, H.K.; Ngeow, S.; Sohi, S.P.; Manning, D.A.C. 2019. Passive CO2 removal in urban soils: Evidence from brownfield sites. Science of the Total Environment, 664: 1312-1323. https://doi.org/10.1016/j.scitotenv.2019.02.027 DOI: https://doi.org/10.1016/j.scitotenv.2019.135573
Keller, W.D. 1948. Native rocks and minerals as fertilizers. Science Monthly, 66(2): 122-130. https://www.jstor.org/stable/19331
Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2): 1-22. https://doi.org/10.1016/j.geoderma.2004.01.0 DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
Lenton, T.M. & Britton, C. 2006. Enhanced carbonate and silicate weathering accelerates recovery from fóssil fuel CO2 perturbations. Global Biogeochemical Cycles, 20(3): GB3009. https://doi.org/10.1029/2005GB002678 DOI: https://doi.org/10.1029/2005GB002678
Lima, M.F. 2019. Geologia de campo, Petrografia e Difratometria de Raios X do Complexo Alcalino Planalto da Serra – MT: Rochas Alcalinas e suas Encaixantes. Monografia (Graduação em Geologia). Faculdade de Geociências – Universidade Federal de Mato Grosso - UFMT, Mato Grosso. 59 p.
Lima, T.M.; Menezes, R.G.; Silva, G.D.; Bahia, R.B.C.; Souza Júnior, L.C.; Resende, Á.V.; Souza Martins, É; Saes, G.S.; Pinho, F.E.C; Neder, R.D.; Santos, A.A.; Santos Júnior, W.A.; Gomes, L.P.; Silva S.N.; Ormond, M.M.; Ganzer, E.B.; Faleiro, A.S.G.; José, M.R.; Muniz, D.H.F.; Freitas, L.L.; Pinheiro, J.M. 2008. Avaliação de Rochas Calcárias e Fosfatadas para Insumos Agrícolas do Estado de Mato Grosso. Cuiabá: CPRM: METAMAT. 178 p.
MAPA - MINISTÉRIO DA AGRICULTURA PECUÁRIA E ABASTECIMENTO. 2023. Portal de dados aberto. Sistema Integrado de Produtos e Estabelecimentos Agropecuários - SIPEAGRO. Dados referentes ao registro e cadastro dos Estabelecimentos e Produtos Agropecuários, tais como pedidos de registro de estabelecimentos e produtos, solicitações de alteração diversas relacionadas com estabelecimentos e produtos agropecuários. Disponível em: https://dados.agricultura.gov.br/dataset/sipeagro/resource/e0bbc9d5-f161-448b-a6d4-c7beb312ec33. Acesso em 30/08/2023.
Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; Garcia, W. O.; Hartmann, J.; Khanna, T.; Lenzi, D.; Luderer, G.; Nemet, G.F.; Rogelj, J.; Smith, P.; Vicente, J.L.V.; Wilcox, J.; Dominguez, M.M.Z. 2018. Negative emissions - Part 1: Research landscape and synthesis. Environmental Research Letters, 13(6): 063001–. https://doi.org/10.1088/1748-9326/aabf9b DOI: https://doi.org/10.1088/1748-9326/aabf9b
Moreira, F.M.S. & Siqueira, J.O. 2006. Microbiologia e bioquímica do solo. 2 ed. Lavras: Editora UFLA. 729 p.
Muniz, V.H.S.A. 2023. Prospeccção de remineralizadores de solo na região sul do município de Colíder (MT): Dados de Campo, Petrografia e Geoquímica. Monografia (Graduação em Geologia). Faculdade de Geociências – Universidade Federal de Mato Grosso - UFMT, Mato Grosso. 35 p.
Padua, E.J. 2012. Rochagem como adubação complementar para culturas oleaginosas. 90 p. Dissertação (Mestrado em Ciências do Solo) Universidade Federal de Lavras, MG, 2012. 91 p.
Paramesh, V.; Kumar, R.M.; Rajanna, G.A.; Gowda, S.; Nath, A.J.; Madival, Y.; Jinger, D.; Bhat, S.; Toraskar, S. 2023. Integrated nutrient management for improving crop yields, soil properties, and reducing greenhouse gas emissions. Frontiers in Sustainable Food Systems, 7: 1173258. https://doi.org/10.3389/fsufs.2023.1173258 DOI: https://doi.org/10.3389/fsufs.2023.1173258
Pillon, C.N. 2016. Dos pós de rocha aos remineralizadores: passado, presente e desafios. Empresa Brasileira de Pesquisa Agropecuária – Embrapa Clima Temperado. Anais do III Congresso Brasileiro de Rochagem. 15-22 p.
Ramos, C.G.; Mello, A.G.; Kautzmann, R.M.A. 2014. A preliminary study of acid volcanic rocks for stonemeal application. Environmental Nanotechnology, Monitoring & Management, 1–2: 30-35. https://doi.org/10.1016/j.enmm.2014.03.002 DOI: https://doi.org/10.1016/j.enmm.2014.03.002
Renforth, P. 2019. The negative emission potential of alkaline materials. Nature Communications, 10(1): 1401. https://doi.org/10.1038/s41467-019-09475-5 DOI: https://doi.org/10.1038/s41467-019-09475-5
Schuiling, R.D. & Krijgsman, P. 2006. Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change, 74, 349-354. https://doi.org/10.1007/s10584-005-3485-y DOI: https://doi.org/10.1007/s10584-005-3485-y
Silva, D.R.G. 2012. Caracterização e avaliação agronômica de rochas silicáticas com potencial de uso como fontes alternativas de nutrientes e corretivos da acidez do solo. Tese (Doutorado em Agronomia) Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília – UnB, Brasília, 2012. 173 p.
Silva, C.R.S.; Silva, L.A.; Melo, G.S.; Santos, M.L.; Silva, R.R.; Silva, M.S. 2023. Remineralizadores de solo como estratégia para sequestro de carbono e mitigação das emissões de CO2 provenientes da agricultura. Ambiente & Sociedade, 26(1): 1-20. DOI: https://doi.org/10.1590/S1414-753X2012000100002
Soares, G.J. 2018. Influência da Rochagem no desenvolvimento de sistemas agroflorestais e na captura de Dióxido de Carbono atmosférico. Dissertação (Mestrado em meio ambiente e Desenvolvimento Rural) Universidade de Brasília – UnB, Brasília. 101 p.
Suchet, P.A. & Probst, J.L. 1993. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: application to Garonne, Congo and Amazon basins. Chemical Geology, 107(3–4): 205-210. https://doi.org/10.1016/0009-2541(93)90174-H DOI: https://doi.org/10.1016/0009-2541(93)90174-H
Swoboda, A.R.; Dantas, M.V.B.; Nogueira, E.S.; Paim, F.A.P. 2022. Remineralizadores de solo: uma revisão. Revista Brasileira de Ciência do Solo, 46(2), 129- 137. https://doi.org/10.1590/1806-9657rbcs.v46.22.0010
Tassinari, C.C.G. & Macambira, M.J.B. 2004. O Cráton Amazônico: evolução geotectônica e recursos minerais. In: Ramos, M.C.B.; Tassinari, C.C.G.; Campos, L.M.A. (Eds.). Geologia do Brasil. Rio de Janeiro: CPRM. p. 131-170.
Theodoro, S.H. & Leonardos, O.H. 2006. The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78 (4): 721-730. https://doi.org/10.1590/S0001-37652006000400008 DOI: https://doi.org/10.1590/S0001-37652006000400008
Walker, J.C.G.; Hays, P.B.; Kasting, J.F. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysics Research, 86(C10): 9776-9782. https://doi.org/10.1029/JC086iC10p09776 DOI: https://doi.org/10.1029/JC086iC10p09776
West, A.J.; Galy, A.; Bickle, M. 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1–2): 211-228. https://doi.org/10.1016/j.epsl.2005.03.020 DOI: https://doi.org/10.1016/j.epsl.2005.03.020
White, A.F. & Blum, A.E. 1995. Effects of climate, chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747. https://doi.org/10.1016/0016-7037(95)00078-E DOI: https://doi.org/10.1016/0016-7037(95)00078-E
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.