Propriedades Sísmicas Anisotrópicas Derivadas da Orientação Cristalográfica Preferencial de Muscovita-Quartzo Milonitos

Autores

  • LUIZ MORALES Programa de Pós-Graduação em Geociências/Instituto de Geociências/Universidade Federal do Rio Grande do Sul.
  • LUÍS FERNANDES Centro de Pesquisas em Geoquímica e Petrologia/Universidade Federal do Rio Grande do Sul.

DOI:

https://doi.org/10.22456/1807-9806.19466

Palavras-chave:

seismic anisotropy, crystallographic preferred orientation, muscovite-quartz mylonite

Resumo

Seismic wave propagation in organized matter usually results in azimuthal variations of longitudinal waves (Pwaves), as well as the effect of birefringence in transversal waves (S-waves), which results in two orthogonal shear waves with contrasting velocities. In this paper we present the results of the anisotropic seismic properties of five samples of muscovitequartz mylonites collected in different parts of a fold in the Saas Fee region, Western Internal Alps. The P-wave velocities in these rocks varies from 5.73 to 6.32 km/s, whereas the high-velocity shear wave (S1) varies from 3.82 to 4.22 km/s and the low velocity (S2) from 3.73 to 4.09 km/s. The anisotropy in these rocks is relatively high and reaches values from 9.5% for P-waves, and almost 11% for shear wave splitting. Both anisotropy and propagation directions seem to be related to from the strong preferred orientation of quartz and muscovite but also depend of muscovite modal content within the different specimens. Development of preferred orientation of minerals destroys and disperses the single crystal seismic properties, which causes a decrease of wave velocities and a dispersion of propagation directions, of both compressional and shear waves. Since the preferred orientation of quartz and muscovite can be directly related to the main macroscopic structures in these rocks (foliation, lineation, and pole of foliation) and the anisotropic seismic properties are related to the preferred orientation, it is possible to determine the propagation directions in terms of these structures. Due to the relatively high muscovite content, many of the maximum propagation velocities are parallel/subparallel to the foliation and some parallel to the lineation of the reference frame. On the other hand, directions of minimum propagation cannot be directly related to the foliation pole. The presence of folds in the mid-to lower crust can exert changes in the propagation directions due to the foliation variation around such structures, mainly in the P-waves.

Downloads

Não há dados estatísticos.

Referências

Anderson, D.L. 1989. Theory of the Earth. Blackwell Science. 384 p.

Barruol, G. Mainprice, D. 1993. A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Physics of the Earth and planetary interiors, 78: 281-300.

Barruol, G.; Kern, H. 1996. P and S wave velocities and shear wave splitting in the lower crust/upper mantle transition (Ivrea zone): experimental and calculated data. Physics of Earth and Planetary Interiors, 95: 175-194.

Bascou, J.; Barruol, G.; Vauchez, A.; Mainprice, D.; Egydio-Silva, M.2001. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 342: 61-8.

Bascou, J.F.L. 2002. Relações entre microestruturas, mecanismos dedeformação e propriedades físicas anisotrópicas em rochas dealto grau de metamorfismo: estudo em alguns eclogitos egranulitos. Tese de Doutoramento, 193 p., Universidade de SãoPaulo (Brasil)/Université de Montpellier II – ISTEEM (França).

Brocher, T.M.; Christensen, N.I. 1990. Seismic anisotropy due to preferred orientation observed in shallow crust in southern Alaska.Geology, 18: 737-740.

Bunge, H.J. (1985) Representation of preferred orientation. In: WenkH.R. (ed.) Preferred orientation in deformed metals and rocks: an introduction to modern texture analyses. Academic Press, Orlando, 73-108.

Burlini, L.; Marquer, D.; Challandes, N.; Mazzola, S.; Zangarini, N.1998. Seismic properties of highly strained marbles fromSplügenpass, central Alps. Journal of Structural Geology, 20(2/3):277-292.

Carter, N.L.; Tsenn, C. 1987. Flow properties of continental lithosphere.Tectonophysics, 136: 27-63.

Crampim, S.; Booth, D.C. 1985. Shear wave polarizations near the North Anatolian Fault II: interpretation in terms if crack-induced anisotropy. Geophysical Journal of the Royal Astronomical Society, 83: 75-92.

Crampim, S. 1987. Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 326 (6130): 491-496.

Crampim, S. 2004. Comment on “Local shear wave observations inJoão Câmara, NE Brazil” by A.F. Nascimento, R.G. Pearce andM.K. Takeya. Journal of Geophysical Research, 109: B02313,doi 10.1029/2003JB002681.

Froitzheim, N. 2001.Origin of the Monte Rosa nappe in the PennineAlps—A new working hypothesis. Geological Society of AmericaBulletin, 113 (5): 604-614.

Imber, J.; Holdsworth, R.E.; Butler, C.A.; Lloyd, G.E. 1997. Fault-zone weakness processes along reactivated Outer Hebrides Fault Zone, Scotland. Journal of the Geological Society of London, 154: 105-109.

Jefferies, S.P.; Holdsworth, R.E.; Wibberley, C.A.J.; Shimamoto, T.; Spiers, C.J.; Niemeijer, A.R.; Lloyd, G.E. 2006. The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan. Journal of Structural Geology, 28: 220-235.

Ji, S.; Salisbury, M.; Hanmer, S. 1993. Petrofabric, P-wave anisotropy and reflectivity of high-grade tectonics. Tectonophysics,222:195-226.

Kendall, J-M. 2000 Seismic anisotropy in the boundary layers of the mantle. In: Karato, S.I.; Forte, A.M.; Liebermann, R.C.; Masters, G.;Stixrude, L. (eds.) Earth ́s Deep Interior: Mineral Physics and Tomography from the Atomic to Global Scale. Geophysical Monograph, American Geophysical Union, 117: 133-160.

Khazanehdari, J.; Rutter, E.H.; Casey, M.; Burlini, L. 1998. The role of crystallographic fabric in the generation of seismic anisotropy and reflectivity of high strain zones in calcite rocks. Journal of Structural Geology, 20(2/3): 293-300.

Lacassin, R. 1987. Kinematics of ductile shearing from outcrop to crustal scale in the Monte Rosa Nappe, Western Alps. Tectonics, 6: 69-88.

Law, R.D. 1990. Crystallographic fabrics: a selective review of their applications to research in structural geology. In: R.J. Knipe & E.H. Rutter (eds.) Deformation Mechanisms, Rheology and Tectonics. The Geological Society of London Special Publication. 335-352.

Liebermann, R.C.; Li, B.; Weidner, D.J. 1998. Elasticity at high-pressures and temperatures. In: Hemley, R.J. (ed.) Ultrahigh-Pressure Mineralogy: physics and chemistry of the Earth’s deep interior. Reviews in Mineralogy, 37: 459-492.

Lloyd, G.E. and Kendall, J.M. 2005. Petrofabric derived seismic properties of a mylonitic quartz simple shear zone: implications for seismic reflection profiling. In: Harvey, P.K., Brewer, T., Pezard, P.A. and Petrov, V.A. (eds.), Petrophysical Properties of crystalline Rocks, Geological Society, London, Special Publication, 240: 75-94.

Lloyd, G.E., Law, R.D., Mainprice, D., and Wheeler, J. 1992. Microstructural and crystal fabric evolution during shear zone formation. Journal of Structural Geology14: 1079-1100.

Mainprice, D. 1990. A FORTRAN program to calculate seismic anisotropy from the lattice-preferred orientation of minerals. Computers & Geosciences, 16: 385-393.

Mainprice, D. 2006. ftp://www.gm.univ-montp2.fr/mainprice//CareWare_ Unicef_Programs/. Acessado em 10/01/2006.

Mainprice, D.; Barruol, G.; Ben Ismail, W. 2000. The seismic anisotropy of the Earth ́s mantle: from single crystal to polycrystal. In: Karato, S.I.; Forte, A.M.; Liebermann, R.C.; Masters, G.; Stixrude, L. (eds.) Earth ́s Deep Interior: Mineral Physics and tomography from the Atomic to Global Scale. GeophysicalMonograph, American Geophysical Union, 117: 237-264.

Mainprice, D.; Casey, M; Schmid, S. 1990. The seismic properties of Alpine calcite and quartz mylonites determined from the orientation distribution function. Mémoir Société Géologique de France, 156: 85-95.

Mainprice, D.; Humbert, M. 1994. Methods of calculating petrophysical properties from lattice preferred orientation data. Surveys in Geophysics, 15: 575-592.

Mainprice, D.; Lloyd, G.E.; Casey, M. 1993. Individual orientation measurements in quartz polycrystals: advantages and limitations for texture and petrophysical property determinations. Journal of Structural Geology, 15(9/10): 1169-1187.

Mainprice, D.; Nicolas, A. 1989. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11(1/2): 175-189.

McSkimin, H.J.; Andreatch, P.; Thurston, R.N. 1965. Elastic moduli of quartz versus hydrostatic pressure at 25 and -195.8°C. Journal of Applied Physics, 36: 1624-1632.

Montagner, J.P.; Guillot, L. 2002. Seismic anisotropy and global geodynamics. In: Karato, S-I.; Wenk, H.-R. (eds.) Plastic Deformation of Minerals and Rocks. Reviews in Mineralogy, 51: 353-385.

Morales, L.F.G. 2006. Estudo da orientação cristalográfica emdobras, limites de grãos e anisotropia sísmica em muscovita-quartzo milonito. Tese de Doutoramento, 288 p., UniversidadeFederal do Rio Grande do Sul.

Morales, L.F.G.; Hinrichs, R.; Fernandes, L.A.D. 2007. A técnica dedifração de elétrons retro-espalhados (EBSD) em microscópioeletrônico de varredura (MEV) e sua aplicação no estudo de rochasdeformadas. Pesquisas em Geociências (aceito para publicação).

Nascimento, A.F.; Bezerra, F.H.R.; Takeya, M.K. 2004. Ductileprecambrian fabric control of seismic anisotropy in the Açu dam area, northeastern Brazil. Journal of Geophysical Research, 109: B10311, doi:10.1029/2004JB003120.

Nye, J.F. 1957. Physical properties of crystals: their representation by tensors and matrices. Claredon Press, Oxford. 332 pp.

Passchier, C.W.; Myers, J.S.; Kröner, A. 1990. Field Geology of High-Grade Gneiss Terrains. Springer-Verlag, Berlin. 112 p.

Pera, E.; Mainprice, D.; Burlini, L. 2003. Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy). Tectonophysics, 370: 11-30.

Platt J.P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97: 1037–53.

Prior, D.J.; Boyle, A.P.; Brenker, F.; Cheadle, M.C.; Day, A.; Lopez,G.; Potts, G.J.; Reddy, S.; Spiess, R.; Timms, N.; Trimby, P.;Wheeler, J.; Zetterstrom, L. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84: 1741-1759.

Ramsay, J.G. 1980. Shear zone geometry: a review. Journal of Structural Geology, 2: 83-101.Ramsay, J.G.; Graham, R.H. 1970. Strain variation in shear belts.Canadian Journal of Earth Sciences, 7: 786-813.

Ring U.; Merle O. 1992. Forethrusting, back thrusting, and lateral gravitational escape in the northern part of the Western Alps (Monte Rosa region). Geological Society of America Bulletin, 104: 901–914.

Siegesmund, S.; Kern, H. 1990. Velocity anisotropy and shear wave splitting in rocks from the mylonite belt along the Insubric line(Ivrea zone, Italy). Earth and Planetary Science Letters, 99: 29-47.

Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. 2004.Tectonic map and overall architecture of the Alpine orogen. EclogaeGeologicae Helveticae, 97(1): 93-117.

Stampfli, G.M.; Mosar, J.; Marquer, D.; Mar-Chant, R.1998. Subduction and obduction process in the Swiss Alps. Tectonophysics, 296: 159-204.

Vauchez, A.; Nicolas, A. 1991. Mountain building: strike-parallel motion and mantle anisotropy. Tectonophysics, 205: 183-201.

Vauchez, A.; Tommasi, A. 2003. Wrench faults down to the asthenosphere: geological and geophysical evidence and thermo-mechanical effects. In: Storti, F.; Holdsworth, R.E.; Salvini, F. (eds.). Intraplate Strike-slip Deformation Belts. GeologicalSociety Publication, London, 210: 15-34.

Vaughan, M.T.; Guggenheim, S. 1986. Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research,91: 4657-4664.

Downloads

Publicado

2007-12-31

Como Citar

MORALES, L., & FERNANDES, L. (2007). Propriedades Sísmicas Anisotrópicas Derivadas da Orientação Cristalográfica Preferencial de Muscovita-Quartzo Milonitos. Pesquisas Em Geociências, 34(2), 03–24. https://doi.org/10.22456/1807-9806.19466