Mapping clay minerals using the Spectral Angle Mapper method and ASTER data, Minas do Camaquã, RS, Brazil

Authors

DOI:

https://doi.org/10.22456/1807-9806.128295

Keywords:

ASTER, Remote sensing, Hydrothermal alteration

Abstract

The present study aimed to identify the occurrence of clay minerals in the Camaquã Mines/RS through the application of the Spectral Angle Mapper (SAM) method in an ASTER scene. The copper ore from the Camaquã Mines occurs in the form of veins, filling subvertical faults, and disseminated in the sedimentary rocks that cover the region. The occurrence of these ore bodies also triggers an intensive process of hydrothermal alteration, marked by the presence of halos with distinct mineral paragenesis, which represents the lateral manifestation of the mineralizations controlled by the faults. An epithermal metallogenic system was proposed as being responsible for the generation of the mineralizing fluids and the formation of alteration zones. The main clay minerals identified in the area were montmorillonite and nontronite, both belonging to the smectite group. In addition to these, minerals of the kaolinite group (kaolinite and haloysite), mixtures of kaolinite/smectite and illite were also identified. As for their genesis, these clay minerals are common products of intermediate argilic alteration, commonly associated with epithermal systems, and which may be present in the late stages of the hydrothermal alterations triggered by the copper mineralization in the Camaquã Mines, as well as by the supergene alteration of this ore deposit tailings.

Downloads

Download data is not yet available.

References

Almeida, D.P.M., Chemale Jr, F & Machado, A. 2012. Late to Post-Orogenic Brasiliano-Pan-African Volcano-Sedimentary Basins in the Dom Feliciano Belt, Southernmost Brazil. In: Al-Juboury, A.I. (Ed.), Petrology – New Perspectives and Applications, pp. 73-135. https://doi.org/10.5772/25189 DOI: https://doi.org/10.5772/25189

About the LP DAAC. Disponível em: <https://lpdaac.usgs.gov/about/>. Acesso em: 01 nov. 2021.

Abrams, M., Hook, S. & Ramachandran, B. 2002. ASTER User Handbook, v2: Advanced Spaceborne Thermal Emission and Reflection Radiometer. Jet Propulsion Laboratory, Pasadena.

Babinski, M., Chemale Jr., F., Van Schmus, W.R., Hartmann, L.A. & Silva, L.C. 1997. U–Pb and Sm–Nd geochronology of the Neoproterozoic granitic-gneissic Dom Feliciano Belt, southernmost Brazil. Journal of South American Earth Science, 10(3-4): 263-274. https://doi.org/10.1016/S0895-9811(97)00021-7 DOI: https://doi.org/10.1016/S0895-9811(97)00021-7

Bettencourt, J.S. 1972. A Mina de cobre de Camaquã, Rio Grande do Sul. Tese de Doutorado, Universidade de São Paulo, 175 p.

Bettencourt, J.S. & Damasceno, E.C. 1974. Análise Tectônica e controles de mineralização no Distrito Cuprífero de Camaquã, RS. In: Congresso Brasileiro de Geologia, vol. 28, Porto Alegre, p. 409-423.

Bicca, M.M., Chemale Jr., F., Jelinek, A.R., Oliveira, C.H.E., Guadagnin, F. & Armstrong, R. 2013. Tectonic evolution and provenance of the Santa Bárbara Group, Camaquã Mines region, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences, 48: 173-192. https://doi.org/10.1016/j.jsames.2013.09.006 DOI: https://doi.org/10.1016/j.jsames.2013.09.006

Borba, A.W. & Mizusaki, A.M.P. 2003. Santa Bárbara Formation (Caçapava do Sul, southern Brazil): depositional sequences and evolution of an Early Paleozoic postcollisional basin. Journal of South American Earth Sciences, 16(5): 365-380. https://doi.org/10.1016/S0895-9811(03)00102-0 DOI: https://doi.org/10.1016/S0895-9811(03)00102-0

Borba, A.W., Mizusaki, A.M.P., Silva, D.R.A., Koester, E., Noronha, F.L. & Casagrande, J. 2006. Provenance of the neoproterozoic Maricá formation (Sul-rio-grandense Shield, southern Brazil): Petrographic and Sm-Nd isotopic constraints. Gondwana Research, 9(4): 464-474. https://doi.org/10.1016/j.gr.2006.01.005 DOI: https://doi.org/10.1016/j.gr.2006.01.005

Chemale Jr., F. 2000. Evolução geológica do Escudo Sul-rio-grandense. In: Holz, M., De Ros, L.F. (Eds.), Geologia do RS. CIGO/UFRGS, Porto Alegre, pp. 13-52.

Chemale Jr., F., Hartmann, L.A. & Silva, L.C. 1995. Stratigraphy and Tectonism of Precambrian to Early Paleozoic Units. XVIII Acta Geologica Leopoldensia, 42: 5-117.

Clark, R.N. 1999. Spectroscopy of rocks and minerals and principles of spectroscopy. In: Rencz, A.N. (Ed.), Remote Sensing for the Earth Sciences. John Wiley, New York, NY, pp. 3-58.

Crósta, A.P., Souza Filho, C.R., Azevedo, F. & Brodie, C. 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21): 4233-4240. https://doi.org/10.1080/0143116031000152291 DOI: https://doi.org/10.1080/0143116031000152291

Di Tommaso, I.M. & Rubinstein, N. 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2): 275-290. https://doi.org/10.1016/j.oregeorev.2006.05.004 DOI: https://doi.org/10.1016/j.oregeorev.2006.05.004

El-Gammal, M., Ali, R. & Samra, R.A. 2014. NDVI threshold classification for detecting vegetation cover in Damietta governorate, Egypt. Journal of American Science, 10(8): 108-113. https://doi.org/10.7537/marsjas100814.15

Faccini, V.F., Paim, P.S.G. & Fragoso César, A.R.S. 1987. Análise Faciológica das Molassas Brasilianas na Região das Minas do Camaquã, RS. In: Simpósio Sulbrasileiro de Geologia 3, vol. 1, Curitiba, p. 75-91.

Galvão, L.S., Almeida-Filho, R. & Vitorello, Í. 2005. Spectral discrimination of hydrothermally altered materials using ASTER short–wave infrared bands: evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation, 7(2): 107-114. https://doi.org/10.1016/j.jag.2004.12.003 DOI: https://doi.org/10.1016/j.jag.2004.12.003

Gainey, S.R., Hausrath, E.M., Adcock, C.T., Tschauner, O., Hurowitz, J.A., Ehlmann, B.L., Xiao, Y. & Bartlett, C.L. 2017. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nature Communications, 8: 1230. https://doi.org/10.1038/s41467-017-01235-7 DOI: https://doi.org/10.1038/s41467-017-01235-7

Gonzalez, M. & Teixeira, G. 1980. Considerações sobre estratigrafia e ambientes de sedimentação da Região das Minas do Camaquã e Jazida Santa Maria—RS. Congresso Brasileiro de Geologia 31, Anais, vol. 3, Sociedade Brasileira de Geologia, SBG, Balneário de Camboriú, p. 1513–1524.

Hartmann, L.A., Philipp, R.P., Santos, J.O.S. & McNaughton, N.J. 2011. Time frame of 753–680 Ma juvenile accretion during the São Gabriel orogeny southern Brazilian Shield. Gondwana Research, 19(1): 84-99. https://doi.org/10.1016/j.gr.2010.05.001 DOI: https://doi.org/10.1016/j.gr.2010.05.001

Honarmand, M., Ranjbar, H. & Shahabpour, J. 2012. Application of principal component analysis and spectral angle mapper in the mapping of hydrothermal alteration in the Jebal-Barez Area, Southeastern Iran. Resource Geology, 62(2): 119-139. https://doi.org/10.1111/j.1751-3928.2012.00184.x DOI: https://doi.org/10.1111/j.1751-3928.2012.00184.x

Huang, Z., Jiang, L., Wu, P., Dang, Z., Zhu, N., Liu, Z. & Luo, H. 2020. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain. Environmental Pollution, 266(2): 115236. https://doi.org/10.1016/j.envpol.2020.115236 DOI: https://doi.org/10.1016/j.envpol.2020.115236

Hunt, G.R. 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3): 501-513. https://doi.org/10.1190/1.1440721 DOI: https://doi.org/10.1190/1.1440721

Janikian, L., Almeida, R.P., Fragoso-Cesar, A.R.S., Martins, V.T.S., Dantas, E.L., Tohver, E., McReath, I., & D'Agrella-Filho, M.S. 2012. Ages (U-Pb SHRIMP and LA ICPMS) and stratigraphic evolution of the Neoproterozoic volcano-sedimentary successions from the extensional Camaquã Basin, Southern Brazil. Gondwana Research, 21(2-3): 466-482. https://doi.org/10.1016/j.gr.2011.04.010 DOI: https://doi.org/10.1016/j.gr.2011.04.010

Khaleghi, M., Ranjbar, H., Abedini, A. & Calagari, A.A. 2020. Synergetic use of the Sentinel-2, ASTER, and Landsat-8 data for hydrothermal alteration and iron oxide minerals mapping in a mine scale. Acta Geodynamica et Geomaterialia, 17, 2(198): 311-328. https://doi.org/10.13168/AGG.2020.0023 DOI: https://doi.org/10.13168/AGG.2020.0023

Khaleghi, M., Ranjbar, H., Shahabpour, J. & Honarmand, M. 2014. Spectral angle mapping, spectral information divergence, and principal componente analysis of the ASTER SWIR data for exploration of porphyry copper mineralization in the Sarduiyeh area, Kerman province, Iran. Applied Geomatics, 6: 49-58. https://doi.org/10.1007/s12518-014-0125-0 DOI: https://doi.org/10.1007/s12518-014-0125-0

Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J. & Goetz, A.F.H. 1993. The Spectral Image Processing System (SIPS)–interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2-3): 145-163. https://doi.org/10.1016/0034-4257(93)90013-N DOI: https://doi.org/10.1016/0034-4257(93)90013-N

Laux, J.H. 1999. Caracterização da Mineralização Cupro-aurífera de uma Parte da Mina Uruguai, Caçapava do Sul-RS. Dissertação de Mestrado, Universidade do Vale do Rio dos Sinos, São Leopoldo, 135p.

Laux, J.H., Lindenmayer, Z.G., Teixeira, J.B.G. & Neto, A.B. 2005. Ore genesis at the Camaquã copper mine, a neoproterozoic sediment-hosted deposit in Southern Brazil. Ore Geology Reviews, 26(1-2): 71-89. https://doi.org/10.1016/j.oregeorev.2004.11.001 DOI: https://doi.org/10.1016/j.oregeorev.2004.11.001

Laux, J.H. & Lindenmayer, Z.G. 1998. Caracterizacão da mineralizacão Cu (Au) de um setor da Mina Uruguai, Minas do Camaquã, Brasil: Geotermometria da clorita. Congresso Latino-Americano de Geologia, 10 e Congresso Nacional de Geologia Econômica, 6, Buenos Aires, Actas, vol. 3, p. 124–129.

Laux, J.H. & Lindenmayer, Z.G. 2000. Caracterizacão do minério filoneano de um setor da Mina Uruguai, Minas do Camaquã. In: Ronchi, L.H., Lobato, A.O.C. (Eds.), Minas do Camaquã, um estudo multidisciplinar. Universidade do Vale do Rio dos Sinos/Fundacão de Amparo à Pesquisa do Estado do Rio Grande do Sul, São Leopoldo, pp. 191-210.

Leinz, V. & Almeida, S.C. 1941. Gênese da Jazida de cobre “Camaquam”, município de Caçapava-Rio Grande do Sul. Secretaria dos Negócios de Agricultura Indústria e Comércio do Estado do Rio Grande do Sul. Boletim - Divisão de Produção Mineral, DPM, vol. 88, 56 p.

Lima, L. de, Almeida, D.P.M. & Collao, S. 1997. La Mina Uruguai, Distrito Minero de Camaquã: Geologia y características químicas de los minerales de alteración y metálicos (RS)-Brasil. Congreso Geológico Chileno, 8, Resumenes Expandidos, vol. 2, p. 925–929.

Maraschin, A.J., Mizusaki, A.M., Zwingmann, H., Borba, A.W. & Sbrissa, G.F. 2010. Illite authigenesis in sandstones of the Guaritas Allogroup (Early Paleozoic): Implications for the depositional age, stratigraphy and evolution of the Camaquã Basin (Southern Brazil). Journal of South American Earth Sciences, 29(2): 400-411. https://doi.org/10.1016/j.jsames.2009.07.007 DOI: https://doi.org/10.1016/j.jsames.2009.07.007

Meneses, P.R. & Almeida, T. 2012. Introdução ao Processamento de Imagens de Sensoriamento Remoto. Brasília, Universidade de Brasília.

Oliveira, C.H.E., Chemale Jr., F., Jelinek, A.R., Bicca, M.M. & Philipp, R.P. 2014. U–Pb and Lu–Hf isotopes applied to the evolution of the late to post-orogenic transtensional basins of the Dom Feliciano belt, Brazil. Precambrian Research, 246: 240-255. https://doi.org/10.1016/j.precamres.2014.03.008 DOI: https://doi.org/10.1016/j.precamres.2014.03.008

Nardi, L. & Lima, E. 1985. A associação shoshonítica de Lavras do Sul, RS. Revista Brasileira de Geociências, 15: 139-146. DOI: https://doi.org/10.25249/0375-7536.1985139146

NASA, METI, AIST, Japan Spacesystems & U.S./Japan ASTER Science Team. 2006. ASTER On-Demand L2 Surface Reflectance VNIR and SWIR Crosstalk-Corrected [Data set]. NASA EOSDIS Land Processes DAAC. Disponível em: <https://doi.org/10.5067/ASTER/AST_07XT.003>. Acesso em: 07 jan. 2022.

Paim, P.S.G., Chemale, F. & Lopes, R.C. 2000. A Bacia do Camaquã. In: M. Holz e L. F. De Ros (Eds), Geologia do Rio Grande do Sul, Porto Alegre, p. 231-274.

Remus, M.V.D., Hartmann, L.A., McNaughhton, M.J. & Fletcher, I.R. 1999a. Shrimp U-Pb zircon ages of volcanism from the São Gabriel Block, southern Brazil. In: Simpósio sobre vulcanismo e ambientes associados, 1, Boletim de Resumos, p. 83.

Remus, M.V.D., Hartmann, L.A., McNaughton, N.J., Groves, D.I., Reischl, J.L. & Dorneles, N.T. 1999b. The Camaquã Cu (A, Ag) and Santa Maria Pb–Zn (Cu, Ag) Mines of Rio Grande do Sul, Southern Brazil—Is their mineralization syngenetic, diagenetic or magmatic hydrothermal? In: Silva, M.G., Misi, A. (Eds.), Base Metal Deposits of Brazil. Ministério das Minas e Energia/Serviço Geológico do Brasil/Departamento Nacional da Produção Mineral, p. 54–63.

Renac, C., Mexias, A.S., Gomes, M.E., Ronchi, L.H., Nardi, L. & Laux, J.H. 2014. Isotopic fluid changes in a Neoproterozoic porphyry–epithermal system: The Uruguay mine, southern Brazil. Ore Geology Reviews, 60: 146-160. https://doi.org/10.1016/j.oregeorev.2013.12.016 DOI: https://doi.org/10.1016/j.oregeorev.2013.12.016

Ribeiro, M.J. 1991. Sulfetos em Sedimentos Detríticos Cambrianos do Rio Grande do Sul, Brasil. Tese de Doutoramento, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 416 p.

Ribeiro, M.J. & Fantinel, L. 1978. Associacões petrotectônicas do Escudo Sul-rio-grandense: I-Tabulacão e distribuicão das associacões petrotectônicas do Rio Grande do Sul. Iheringia, Série Geológica, 5: 19-54.

Robb, L. 2005. Introduction to ore-forming processes. Blackwell Publishing, UK, 373 p.

Robertson, J.F. 1966. Revision of the stratigraphy and nomenclature of rock units in the Caçapava-Lavras region, State of Rio Grande do Sul, Brazil. Notas e Estudos-IG/UFRGS, 1(2): 41-54.

Ronchi, L.H., Lindenmayer, Z.G., Bastos Neto, A. & Murta, C.R. 2000. O stockwork e a zona do minério sulfetado no arenito inferior da Mina Uruguai, RS. In: Ronchi L.H., Lobato, A.O.C. (Org.), Minas do Camaquã, um estudo multidisciplinar. Universidade do Vale do Rio dos Sinos/Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, São Leopoldo, pp. 165-190.

Rowan, L.C. & Mars, J.C. 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84(3): 350-366. https://doi.org/10.1016/S0034-4257(02)00127-X DOI: https://doi.org/10.1016/S0034-4257(02)00127-X

Sommer, C.A., Lima, E.F., Nardi, L.V.S., Figueiredo, A.M.G. & Pierosan, R. 2005. Potassic and low- and high-Ti mildly alkaline volcanism in the Neoproterozoic Ramada Plateau, southernmost Brazil. Journal of South American Earth Sciences, 18(3-4): 237-254. https://doi.org/10.1016/j.jsames.2004.11.003 DOI: https://doi.org/10.1016/j.jsames.2004.11.003

Sulsoft. 2000. Guia do ENVI em Português. Disponível em: .

Taylor, B.E. 2007. Epithermal gold deposits. In: Goodfellow, W.D. (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, pp. 113-139.

Tommasi, A., Vauchez, A., Femandes, L.A.D. & Porcher, C.C. 1994. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil. Tectonics, 13(2): 421-437. https://doi.org/10.1029/93TC03319 DOI: https://doi.org/10.1029/93TC03319

Toniolo, J.A., Gil, C.A.A. & Sander, A. 2007. Metalogenia das Bacias Neoproterozóicas-Eopaleozóicas do Sul do Brasil: Bacia do Camaquã. CPRM, Porto Alegre, 154p.

Troian, G.C., Mexias, A.S., Gomes, M.E.B., Canarim, D., Patrier-Mas, P. & Renac, C. 2009. A Cloritização na Mina Uruguai, Minas do Camaquã, RS, Brasil. Pesquisas em Geociências, 37(3): 173-190. https://doi.org/10.22456/1807-9806.22658 DOI: https://doi.org/10.22456/1807-9806.22658

Veigel, R. 1989. Evolução Diagenética e Mineralização Cu-Pb-Zn dos “Red-Beds” do Distrito de Camaquã - RS. Dissertação de Mestrado, Universidade de Brasília, 185 p.

Veigel, R. & Dardenne, M.A. 1990. Paragênese e sucessão mineral nas diferentes etapas da evolução da mineralização Cu–Pb–Zn do Distrito de Camaquã. RS. Revista Brasileira de Geociências, 20: 55-67. DOI: https://doi.org/10.25249/0375-7536.19905567

Vicente, L.E. & Souza Filho, C.R. de. 2011. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115(8): 1824-1836. https://doi.org/10.1016/j.rse.2011.02.023 DOI: https://doi.org/10.1016/j.rse.2011.02.023

Wang, G., Ding, C., Liu, N., Liu, H., Yang, J., Ma, S., He, C. & Zhao, H. 2022. Complexant-montmorillonite nanocomposites for heavy metal binding in sulfide tailing. Journal of Materials Research and Technology, 17: 329-341. https://doi.org/10.1016/j.jmrt.2022.01.019 DOI: https://doi.org/10.1016/j.jmrt.2022.01.019

Weier, J. & Herring, D. 2000. Measuring Vegetation (NDVI and EVI). NASA Earth Observatory, Washington, D.C.

Wilson, M.J. 1999. The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Minerals, 34(1): 7-25. https://doi.org/10.1180/000985599545957 DOI: https://doi.org/10.1180/000985599545957

Published

2023-07-11

How to Cite

Balbinot, P. L., & Engelmann de Oliveira, C. H. (2023). Mapping clay minerals using the Spectral Angle Mapper method and ASTER data, Minas do Camaquã, RS, Brazil. Pesquisas Em Geociências, 50(1), e128295. https://doi.org/10.22456/1807-9806.128295