A Method to Quantify Degree of Exposure Using Wave Energy and Beach Profile Responses Applied to South Coast of Espírito Santo
DOI:
https://doi.org/10.22456/1807-9806.115485Keywords:
SMC Brasil, Wave dissipation, Shoreface morphology, Inner Shelf, Coastline orientation, Shallow water wavesAbstract
Wave energy that reaches the coast is determined by characteristics of deep-sea waves. However, as the waves propagate toward the coast, their energy change given the interactions with the seabed at the inner shelf and shoreface and due to orientation of the coastline. The present study proposes a methodology to assess the degree of exposure to wave energy, considering the interaction of waves with the seabed and beach profiles stability under different wave conditions. Thus, wave data from the ERA5 model and the numerical model OLUCA-MC were used to simulate the pattern of wave energy at shallow waters for the following scenarios: North (337.5° -22.5°), Northeast (22.5° -67.5°), East (67.5° -112.5°), Southeast (112.5° -157.5°), South (157.5° -202.5°) and Southwest (202.5° -247.5°). The evaluation of the profiles response was made based on the variability of height of the barrier and the emerged beach volume. The results indicate that the direction associated with the most energetic waves suffer intense dissipation as they propagate towards the coast. While waves related to the most recurrent directions increase their energy while propagating towards the coast. The profiles associated with a wide range of wave energy present greater variability and tendency to reduce barrier height and sedimentary volume. In conclusion, wave energy dissipation at inner shelf and shoreface occurs differently for each wave direction, corroborated by the beach profiles variation.
Downloads
References
Albino, J., Girardi, G., & Nascimento, K.A. 2006. Espírito Santo. In: Muehe, Dieter (org.). Erosão e progradação do litoral brasileiro. Brasília: MMA, p. 227264.
Albino, J., Jiménez, J.A., & Oliveira, T.C.A. 2016b. Planform and mobility in the Meaípe-Maimbá embayed beach on the South East coast of Brazil. Geomorphology, 253: 110-122.
Albino, J., Neto, N.C., & Oliveira, T.C.A. 2016a. The Beaches of Espírito Santo. In: Short, A. D., & Klein, A.H.D.F. (Ed.). Brazilian beach systems. Springer, p. 333-361.
Albino, J., Paiva, D., & De Souza Modolo, G.V.M. 2001. Geomorfologia, tipologia, vulnerabilidade erosiva e ocupação urbana das praias do litoral do Espírito Santo, Brasil. Geografares, 2: 63-69.
Bingölbali, B., Jafali, H., Akpinar, A., & Bekiroğlu, S. 2020. Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas. Renewable Energy, 154: 136-150.
Bulhões, E.M.R., Fernandez, G.B., De Oliveira Filho, S. R., Pereira, T.G., & Da Rocha, T.B. 2014. Impactos costeiros induzidos por ondas de tempestade entre o Cabo Frio e o Cabo Búzios, Rio de Janeiro, Brasil. Quaternary and Environmental Geosciences, 5(2): 155-165.
Crespo, A.A. 1991. Estatística. Saraiva Educação, São Paulo, 224p.
Da Silva, A.L.C., Gralato, J.D.C.A., Brum, T.C.F., Silvestre, C.P., Da Silva Baptista, É.C., & Pinheiro, A.B. 2020. Dinâmica de praia e susceptibilidade às ondas de tempestades no litoral da ilha grande (ANGRA DOS REIS-RJ). Journal of Human and Environment of Tropical Bays, 1: 9-44.
De Almeida, L.R., Amaro, V. E., Marcelino, A.M.T., & Scudelari, A.C. 2015. Avaliação do clima de ondas da praia de Ponta Negra (RN, Brasil) através do uso do SMC-Brasil e sua contribuição à gestão costeira. Revista de Gestão Costeira Integrada, 15(2): 135-151.
De Matos, M.F.A., Amaro, V.E., Fortes, C.J., & Scudelari, A.C. 2014. Interação entre ondas oceânicas e fundo marinho: resultados na plataforma continental setentrional do rio grande do norte. Revista Brasileira de Geomorfologia, 15(3): 371-391.
De Souza, T.A., Bulhões, E., & Da Silva Amorim, I.B. 2016. Ondas de tempestade na costa Norte Fluminense. Quaternary and Environmental Geosciences, 6(2): 10-17.
DHN. Diretoria de Hidrografia e Navegação. Centro de Hidrografia da Marinha. 2021. Banco nacional de dados oceanográficos. Previsões de maré. Disponível em: http://www.mar.mil.br. Acesso em: 07 jan. 2021.
Dodet, G., Castelle, B., Masselink, G., Scott, T., Davidson, M., Floc'h, F. & Suanez, S. 2019. Beach recovery from extreme storm activity during the 2013–14 winter along the Atlantic coast of Europe. Earth Surface Processes and Landforms, 44(1): 393-401.
Durán, R., Guillén, J., Ruiz, A., Jiménez, J. A., & Sagristà, E. 2016. Morphological changes, beach inundation and overwash caused by an extreme storm on a low-lying embayed beach bounded by a dune system (NW Mediterranean). Geomorphology, 274: 129-142.
Eguchi, B.M.M., & Albino, J. 2018. Bluff retreat induced by wave action on a tropical beach, in Espírito Santo, Brazil. Brazilian Journal of Geophysics, 36(4): 569-580.
Eichentopf, S., Baldock, T.E., Cáceres, I., Hurther, D., Karunarathna, H., Postacchini, M., ... & Alsina, J. M. 2019. Influence of storm sequencing and beach recovery on sediment transport and beach resilience (RESIST). In: PROCEEDINGS OF THE HYDRALAB+ JOINT USER MEETING, Bucharest, Romania, p. 21-25.
Figueiredo Filho, D.B., & Silva Junior, J.A. 2009. Desvendando os Mistérios do Coeficiente de Correlação de Pearson (r). Revista Política Hoje, 18(1): 115-146.
Filgueiras, G.D.L., & Albino, J. 2020. Vulnerabilidade costeira a partir da abordagem multicritério: estudo de caso no litoral sul do Espírito Santo. Revista do Departamento de Geografia, 40: 78-93.
Firmino, L.A.C., & Bulhões, E.M.R. 2020. Aspectos das ondas oceânicas em áreas de erosão costeira. Litoral do Espírito Santo, Brasil. Finisterra, 55(113): 23-44.
George, E., Lunardi, B., Smith, A., Lehner, J., Wernette, P., & Houser, C. 2021. Storm impact and recovery of a beach-dune system in Prince Edward Island. Geomorphology, 384: 1-6.
Gon, C.J., Macmahan, J.H., Thornton, E.B., & Denny, M. 2020. Wave dissipation by bottom friction on the inner shelf of a rocky shore. Journal of Geophysical Research: Oceans, 125(10): 1-16.
González, M., Medina, R., Gonzalez-Ondina, J., Osorio, A., Méndez, F. J., & García, E. 2007. An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Computers & Geosciences, 33(7), 916-931.
Gornitz, V. 1991. Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 89(4), 379-398.
Hallermeier, R.J. 1981. Seaward limit of significant sand transport by waves: an annual zonation for seasonal profiles. Coastal Engineering Research Center Fort Belvoir Va, 23p.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.N. 2018: ERA5 hourly data on single levels from 1979 to present. In: COPERNICUS CLIMATE CHANGE SERVICE (C3S) CLIMATE DATA STORE (CDS). Disponível em: https://cds.climate.copernicus.eu. Acesso em: 03 fev. 2021.
Holthuijsen, L.H. 2007. Linear wave theory (oceanic waters). In: Holthuijsen, L.H. (Ed.). Waves in oceanic and coastal waters. Cambridge University press, p. 106-142.
Innocentini, V., Arantes, F.O., & Prado, S.C.C. 2003. Modelo de ondas aplicado ao caso 5-8 de maio de 2001. Revista Brasileira de Meteorologia, 18(01): 97-104.
Jackson, D.W.T. & Cooper, J.A.G. 2009. Geological control on beach form: accommodation space and contemporary dynamics. Journal of Coastal Research, (56): 69-72.
Jackson, D., & Short, A. 2020. Sandy Beach Morphodynamics. Ed. Elsevier, 769p.
Komar, P.D. 1998. Beach processes and sedimentation. Upper Saddle River, N.J.: Prentice Hall, 544p.
Li, C.Y., Shih, R.S., & Weng, W.K. 2020. Investigation of Ocean-Wave-Focusing Characteristics Induced by a Submerged Crescent-Shaped Plate for Long-Crested Waves. Water, 12(2): 1-17.
Lins-De-Barros, F.M., Klumb-Oliveira, L., & Lima, R.D.F. 2018. Avaliação histórica da ocorrência de ressacas marinhas e danos associados entre os anos de 1979 e 2013 no litoral do estado do Rio de Janeiro (Brasil). Revista de Gestão Costeira Integrada, 18(2): 85-102.
Lübbecke, J.F., Burls, N.J., Reason, C.J., & Mcphaden, M.J. 2014. Variability in the South Atlantic anticyclone and the Atlantic Niño mode. Journal of Climate, 27(21): 8135-8150.
Marcelino, A.M.T., Pinheiro, L.R.D.S.G., & Costa, J.R.S. 2018. Planejamento participativo para a gestão da orla marítima de Galinhos/RN, nordeste brasileiro, com apoio de sensores remotos e modelagem costeira. Desenvolvimento e Meio Ambiente, 44: 119-139.
Martin, L., Suguio, K., Flexor, J.M., & Arcanjo, J.D. 1996. Coastal Quaternary formations of the southern part of the State of Espírito Santo (Brazil). In: ACADEMIA BRASILEIRA DE CIÊNCIAS. Anais... São Paulo, v. 68, n 3, p. 389-404.
Masselink, G., Hughes, M., & Knight, J. 2014. Introduction to coastal processes and geomorphology. Routledge.
Nogueira, I.C.M. 2014. Caracterização do clima de ondas na bacia do espírito santo através de modelagem numérica. Rio de Janeiro, 128p. Dissertação de Mestrado em Engenharia Oceânica, Universidade Federal de Rio de Janeiro/COPPE.
Padilla-Hernández, R., & Monbaliu, J. 2001. Energy balance of wind waves as a function of the bottom friction formulation. Coastal Engineering, 43(2): 131-148.
Parise, C.K., Calliari, L.J., & Krusche, N. 2009. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion. Brazilian Journal of Oceanography, 57(3): 175-188.
Patel, R.P., Nagababu, G., Kumar, S.V.A., Seemanth, M., & Kachhwaha, S. S. 2020. Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering, 217: 1-35.
Poate, T., Masselink, G., Austin, M.J., Dickson, M., & Mccall, R. 2018. The role of bed roughness in wave transformation across sloping rock shore platforms. Journal of Geophysical Research: Earth Surface, 123(1): 97-123.
Raaijmakers, R., Krywkow, J. & Van Der Veen, A. 2008. Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation. Natural Hazards, 46: 307-322.
Ramieri, E., Hartley, A., Barbanti, A., Santos, F. D., Gomes, A., Hilden, M. & Santini, M. 2011. Methods for assessing coastal vulnerability to climate change. ETC CCA technical paper, 1: 1-93.
Reboita, M.S., Rocha, R.D., & Ambrizzi, T. 2005. Climatologia de ciclones sobre o Atlântico Sul utilizando métodos objetivos na detecção destes sistemas. In: CONGRESSO ARGENTINO DE METEOROLOGIA, 9., 2005, Buenos Aires. Anais... Buenos Aires: CONGREMET, 2005.
Robin, N., Billy, J., Castelle, B., Hesp, P., Laporte-Fauret, Q., Lerma, A. N., ... & Michalet, R. 2020. Beach-dune Recovery from the Extreme 2013-2014 Storms Erosion at Truc Vert Beach, Southwest France: New Insights from Ground-penetrating Radar. Journal of Coastal Research, 95: 588-592.
Rodríguez, M.G., Nicolodi, J.L., Gutiérrez, O.Q., Losada, V.C., & Hermosa, A.E. 2016. Brazilian coastal processes: wind, wave climate and sea level. In: Short, A.D., & Klein, A.H.D.F. (Ed.). Brazilian beach systems. Springer, p. 37-66.
Sallenger, A.H. 2000. Storm impact scale for Barrier Island. Journal of Coastal Research, 16: 890-895.
Silva, I.R., Guimarães, J.K., Bittencourt, A.C., Rodrigues, T.K., & An, G.F. 2017. Avaliação da dinâmica litorânea da região de Baixio/Barra do Itariri, litoral norte do Estado da Bahia, utilizando o Sistema de Modelagem Costeira (SMC-Brasil). Pesquisas em Geociências, 44(2): 221-234.
Short, A.D. 1999. Handbook of beach and shoreface morphodynamics. London, John Wiley, 379p.
Sun, X., Cook, K.H., & Vizy, E.K. 2017. The South Atlantic subtropical high: climatology and interannual variability. Journal of Climate, 30(9): 3279-3296.
Trombetta, T.B., Oleinik, P.H., Lopes, B.V., Guimarães, R.C., Marques, W.C., & Isoldi, L.A. 2018. Atenuação da Energia das Ondas sobre uma Rampa que atua como Estrutura de Proteção Costeira na Plataforma Sul do Brasil. Revista Brasileira de Geografia Física, 11(4): 1303-1320.
Viavattene, C., Jiminez, J., Owen, D., Priest, S.J., Parker, D.J., Micou, P., & LY, S. 2015. Coastal risk assessment framework guidance document. London, Middlesex University, 156p. (Project Report).
Yang, Z., García-Medina, G., Wu, W.C., & Wang, T. 2020. Characteristics and variability of the nearshore wave resource on the US West Coast. Energy, 203: 1-16.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pesquisas em Geociências

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.