Effect of Xylazine, Midazolam and Dexmedetomidine Preanaesthetics on Changes in Intraocular Pressure in Rats
DOI:
https://doi.org/10.22456/1679-9216.141948Keywords:
intraocular pressure, reverse trendelenburg position, preanaesthesiaAbstract
Background: Intraocular pressure (IOP) is influenced by a variety of factors, including intraocular fluid volume, choroidal blood volume, and vitreous volume. Abnormal IOP can result in visual issues, with ocular hypotension potentially leading to retinal detachment and ocular hypertension, causing damage to the retina and optic nerve, which can lead to glaucoma. Anaesthetic agents and body position, such as the Trendelenburg position, can significantly affect IOP. While there is extensive research on IOP changes at various positions in humans, data on the effects of the prone and Trendelenburg positions in both human and veterinary medicine are limited. The Trendelenburg position, which involves tilting the head 15°-45° up or down, is commonly used in laparoscopic and bariatric surgeries and in veterinary procedures, such as ovariohysterectomy and castration. However, the impact of this position on IOP, particularly when combined with anaesthetics, has not been well documented. Preanaesthetic agents, such as xylazine (XYL) and dexmedetomidine (DEX), alpha-adrenoreceptor agonists, and midazolam (MID), a benzodiazepine, can influence intraocular pressure (IOP). This study evaluated the impact of these agents on IOP in Wistar albino rats positioned in reverse Trendelenburg (RTr), a common position in veterinary surgery, to assess their safe use.
Materials, Methods & Results: The rats were randomly divided into 3 groups: DXM group [0.75 μg/kg, n=7], MID [5 mg/kg, n=7], and XYL [10 mg/kg, n = 7]. Intraperitoneal injections were administered, and IOP was measured using an Icare Tonovet Plus tonometer at baseline (T0) and at intervals 5 (T5), 10 (T10), 15 (T15), 30 (T30), 45 (T45), 60 (T60), and 90 (T90) min) post-anaesthesia. The rats were immobilized at a 15-degree angle for 90 min. Six consecutive IOP measurements were averaged for each time point. Sedation levels were assessed using a numerical rating scale. In-group measurements and statistical evaluations showed no significant differences at T0 between the DXM, MID, and XYL groups. A decrease in IOP was observed at T15, T30, T45, T60, and T90 in all groups (P < 0.05), with the lowest values at T45 in the XYL group and T60 in the DXM and MID groups. No significant differences were observed between the groups; however, sedation score (SS) increased significantly at T45 and T60, correlating with the lowest IOP values compared to T0 (P < 0.05). The XYL group showed the fastest onset (2.44 ± 1.2 min) and longest duration (80.55 ± 6.56 min) of sedation, although these differences were not statistically significant. The findings of this study suggest that preanaesthetic administration of DXM, MID, and XYL can lead to significant decreases in IOP during deep sedation in the RTr position.
Discussion: This is particularly important in veterinary medicine, where research on IOP is limited, particularly in relation to positioning during surgery. Previous studies in horses and cats have shown varying effects of surgical position on IOP, with significant increases in the dorsal and Trendelenburg positions. Human studies have indicated that RTr position can reduce IOP, especially with a greater head angle. This study found that the Tonovet Plus rebound tonometer provides reliable measurements, lending credence to its findings. Further research is required to understand the impact of anaesthetics on IOP across different species and surgical positions. This study suggests that DXM, MID, and XYL have minimal effects on IOP in the RTr position and can be safely utilized in procedures, such as ovariohysterectomy and castration, contributing to the development of strategies for preventing POVL in veterinary medicine and informing human surgical practices.
Keywords: intraocular pressure, reverse trendelenburg position, preanaesthesia.
Downloads
References
Adisa A.O., Onakpoya O.H., Adenekan A.T. & Awe O.O. 2016. Intraocular pressure changes with positioning during laparoscopy. Journal of the Society of Laparoendoscopic Surgeons. 20(4). DOI: 10.4293/JSLS.2016.00078 DOI: https://doi.org/10.4293/JSLS.2016.00078
Alling C.R., Cremer J., Liu C.C., Lewin A.C., Camacho-Luna P. & Carter R.T. 2021. Effect of multiple head positions on intraocular pressure in healthy, anesthetized horses during hoisting. Veterinary Ophthalmology. 24(1): 71-79. DOI: 10.1111/vop.12849 DOI: https://doi.org/10.1111/vop.12849
Carey T.W., Shaw K.A., Weber M.L. & DeVine J.G. 2014. Effect of the degree of reverse Trendelenburg position on intraocular pressure during prone spine surgery: a randomized controlled trial. The Spine Journal. 14(9): 2118-2126. DOI: 10.1016/j.spinee.2013.12.025 DOI: https://doi.org/10.1016/j.spinee.2013.12.025
Chandra A., Ranjan R., Kumar J., Vohra A. & Thakur V.K. 2016. The effects of intravenous dexmedetomidine premedication on intraocular pressure and pressor response to laryngoscopy and intubation. Journal of Anaesthesiology Clinical Pharmacology. 32(2): 198-202. DOI: 10.4103/0970-9185.173354 DOI: https://doi.org/10.4103/0970-9185.173354
Chidlow G., Ebneter A., Wood J.P. & Casson R.J. 2011. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathologica. 121(6): 737-751. DOI: 10.1007/s00401-011-0807-1 DOI: https://doi.org/10.1007/s00401-011-0807-1
Choy Y. & Choi J.H. 2021. Comparison of intraocular pressure in Spargue-Dawley rats using two types of tonometers. Exploratory Animal & Medical Research. 11(2): 152-156. DOI: 10.52635/eamr/11.2.152-156 DOI: https://doi.org/10.52635/EAMR/11.2.152-156
Corona D., Ranninger E., Jörger F., Goldinger E., Stefan A., Torgerson P.R. & Bettschart-Wolfensberger R. 2020. Cats undergoing spay with medetomidine, ketamine and butorphanol develop arterial oxygen desaturation independent of surgical positioning and increased intraocular pressure in Trendelenburg position. Schweizer Archiv für Tierheilkunde. 162(9): 539-550. DOI: 10.17236/sat00271 DOI: https://doi.org/10.17236/sat00271
El Basty A., Gaber R., Elmaria A., Sabry M. & Hussein T.R. 2021. Correlation between changes in lamina cribrosa structure and visual field in primary open-angle glaucoma. Clinical Ophthalmology. 15: 4715-4722. DOI: 10.2147/OPTH.S343019 DOI: https://doi.org/10.2147/OPTH.S343019
Emery S.E., Daffner S.D., France J.C., Ellison M., Grose B.W., Hobbs G.R. & Clovis N.B. 2015. Effect of head position on intraocular pressure during lumbar spine fusion: a randomized, prospective study. The Journal of Bone & Joint Surgery. 97(22): 1817-1823. DOI: 10.2106/JBJS.O.00091 DOI: https://doi.org/10.2106/JBJS.O.00091
Erol M., Erol H., Atalan G., Ceylan C. & Yönez M.K. 2020. The effects of propofol-sevoflurane, midazolam-sevoflurane and medetomidine-ketamine-sevoflurane anesthetic combinations on intraocular pressure in rabbits. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 26(4): 477-481. DOI: 10.9775/kvfd.2019.23557 DOI: https://doi.org/10.9775/kvfd.2019.23557
Ghaffari M.S., Rezaei M.A., Mirani A.H. & Khorami N. 2010. The effects of ketamine-midazolam anesthesia on intraocular pressure in clinically normal dogs. Veterinary Ophthalmology. 13(2): 91-93. DOI: 10.1111/j.1463-5224.2010.00762.x DOI: https://doi.org/10.1111/j.1463-5224.2010.00762.x
Gloe S., Rothering A., Kiland J.A. & McLellan G.J. 2019. Validation of the Icare® TONOVET plus rebound tonometer in normal rabbit eyes. Experimental Eye Research. 185: 107698. DOI: 10.1016/j.exer.2019.107698 DOI: https://doi.org/10.1016/j.exer.2019.107698
Goel N., Chowdhury I., Dubey J., Mittal A. & Pathak S. 2020. Quantitative rise in intraocular pressure in patients undergoing robotic surgery in steep Trendelenburg position: a prospective observational study. Journal of Anaesthesiology Clinical Pharmacology. 36(4): 546-551. DOI: 10.4103/joacp.JOACP_96_20 DOI: https://doi.org/10.4103/joacp.JOACP_96_20
Grant G.P., Szirth B.C., Bennett H.L., Huang S.S., Thaker R.S., Heary R.F. & Turbin R.E. 2010. Effects of prone and reverse Trendelenburg positioning on ocular parameters. The Journal of the American Society of Anesthesiologists. 112(1): 57-65. DOI: 10.1097/ALN.0b013e3181c294e1 DOI: https://doi.org/10.1097/ALN.0b013e3181c294e1
Hwang J.W., Oh A.Y., Hwang D.W., Jeon Y.T., Kim Y.B. & Park S.H. 2013. Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surgical Laparoscopy Endoscopy & Percutaneous Techniques. 23(2): 229-232. DOI: 10.1097/SLE.0b013e31828a0bba DOI: https://doi.org/10.1097/SLE.0b013e31828a0bba
Joo J., Koh H., Lee K. & Lee J. 2016. Effects of systemic administration of dexmedetomidine on intraocular pressure and ocular perfusion pressure during laparoscopic surgery in a steep Trendelenburg position: prospective, randomized, double-blinded study. Journal of Korean Medical Science. 31(6): 989-996. DOI: 10.3346/jkms.2016.31.6.989 DOI: https://doi.org/10.3346/jkms.2016.31.6.989
Kanda T., Iguchi A., Yoshioka C., Nomura H., Higashi K., Kaya M., Yamamoto R., Kuramoto T. & Furukawa T. 2015. Effects of medetomidine and xylazine on intraocular pressure and pupil size in healthy Beagle dogs. Veterinary Anaesthesia and Analgesia. 42(6): 623-628. DOI: 10.1111/vaa.12249 DOI: https://doi.org/10.1111/vaa.12249
Kaur G., Sharma M., Kalra P., Purohit S. & Chauhan K. 2018. Intraocular pressure changes during laparoscopic surgery in Trendelenburg position in patients anesthetized with propofol-based total intravenous anesthesia compared to sevoflurane anesthesia: a comparative study. Anesthesia Essays and Researches. 12(1): 67-72. DOI: 10.4103/aer.AER_177_17 DOI: https://doi.org/10.4103/aer.AER_177_17
Kitamura S., Takechi K., Nishihara T., Konishi A., Takasaki Y. & Yorozuya T. 2018. Effect of dexmedetomidine on intraocular pressure in patients undergoing robot-assisted laparoscopic radical prostatectomy under total intravenous anesthesia: a randomized, double-blinded placebo-controlled clinical trial. Journal of Clinical Anesthesia. 49: 30-35. DOI: 10.1016/j.jclinane.2018.06.006 DOI: https://doi.org/10.1016/j.jclinane.2018.06.006
Komáromy A.M., Garg C.D., Ying G.S. & Liu C. 2006. Effect of head position on intraocular pressure in horses. American Journal of Veterinary Research. 67(7): 1232-1235. DOI: 10.2460/ajvr.67.7.1232 DOI: https://doi.org/10.2460/ajvr.67.7.1232
Kusolphat P., Soimala T. & Sunghan J. 2022. Intraocular pressure and cardiovascular effects of dexmedetomidine premedication and tiletamine-zolazepam for anesthetic induction in dogs. Veterinary World. 15(12): 2929-2936. DOI: 10.14202/vetworld.2022.2929-2936 DOI: https://doi.org/10.14202/vetworld.2022.2929-2936
Ling Y.T.T., Pease M.E., Jefferys J.L., Kimball E.C., Quigley H.A. & Nguyen T.D. 2020. Pressure-induced changes in astrocyte GFAP, actin, and nuclear morphology in mouse optic nerve. Investigative Ophthalmology & Visual Science. 61(11): 14. DOI: 10.1167/iovs.61.14.27 DOI: https://doi.org/10.1167/iovs.61.11.14
Martínez-Águila A., Fonseca B., Bergua A. & Pintor J. 2013. Melatonin analogue agomelatine reduces rabbit's intraocular pressure in normotensive and hypertensive conditions. European Journal of Pharmacology. 701(1-3): 213-217. DOI: 10.1016/j.ejphar.2012.12.009 DOI: https://doi.org/10.1016/j.ejphar.2012.12.009
Mathew D.J., Greene R.A., Mahsood Y.J., Hallaji N., Vargas A.M.B., Jin Y.P., Finelli A., Parotto M., Belkin A., Trope G.E. & Buys Y.M. 2018. Preoperative brimonidine tartrate 0.2% does not prevent an intraocular pressure rise during prostatectomy in steep Trendelenburg position. Journal of Glaucoma. 27(11): 965-970. DOI: 10.1097/IJG.0000000000001047 DOI: https://doi.org/10.1097/IJG.0000000000001047
May C.A. 2008. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. The Open Ophthalmology Journal. 2: 94-101. DOI: 10.2174/1874364100802010094 DOI: https://doi.org/10.2174/1874364100802010094
Mayordomo-Febrer A., Rubio M., Martínez-Gassent M. & López-Murcia M.M. 2017. Effects of morphine-alfaxalone-midazolam premedication, alfaxalone induction and sevoflurane maintenance on intraocular pressure and tear production in dogs. Veterinary Record. 180(19): 474. DOI: 10.1136/vr.104040 DOI: https://doi.org/10.1136/vr.104040
Meekins J.M., McMurphy R.M. & Roush J.K. 2020. The effect of body position on intraocular pressure in anesthetized horses. Veterinary Ophthalmology. 23(4): 668-673. DOI: 10.1111/vop.12769 DOI: https://doi.org/10.1111/vop.12769
Micieli F., Chiavaccini L., Lamagna B., Vesce G. & Santangelo B. 2018. Comparison of intraocular pressure and pupil diameter after sedation with either acepromazine or dexmedetomidine in healthy dogs. Veterinary Anaesthesia and Analgesia. 45(5): 667-672. DOI: 10.1016/j.vaa.2018.05.003 DOI: https://doi.org/10.1016/j.vaa.2018.05.003
Mizumoto K., Gosho M., Iwaki M. & Zako M. 2017. Ocular parameters before and after steep Trendelenburg positioning for robotic-assisted laparoscopic radical prostatectomy. Clinical Ophthalmology. 11: 1643-1650. DOI: 10.2147/OPTH.S139874 DOI: https://doi.org/10.2147/OPTH.S139874
Molloy B. & Watson C. 2012. A comparative assessment of intraocular pressure in prolonged steep Trendelenburg position versus level supine position intervention. Journal of Anesthesiology & Clinical Science. 1(1): 9. DOI: 10.7243/2049-9752-1-9 DOI: https://doi.org/10.7243/2049-9752-1-9
Molloy B. & Cong X. 2014. Perioperative dorzolamide-timolol intervention for rising intraocular pressure during steep Trendelenburg positioned surgery. Journal of the American Association of Nurse Anesthesiology. 82(3): 203-211. PMID: 25109158.
Monk C.S., Brooks D.E., Granone T., Garcia-Pereira F.L., Melesko A. & Plummer C.E. 2017. Measurement of intraocular pressure in healthy anesthetized horses during hoisting. Veterinary Anaesthesia and Analgesia. 44(3): 502-508. DOI: 10.1016/j.vaa.2016.10.001 DOI: https://doi.org/10.1016/j.vaa.2016.10.001
Mowafi H.A., Aldossary N., Ismail S.A. & Alqahtani J. 2008. Effect of dexmedetomidine premedication on the intraocular pressure changes after succinylcholine and intubation. British Journal of Anaesthesia. 100(4): 485-489. DOI: 10.1093/bja/aen020 DOI: https://doi.org/10.1093/bja/aen020
Murillo J., Robledo S., Montaño J. & Acevedo S.P. 2021. Variation of intraocular pressure comparing rebound (TONOVET Plus®) and applanation (TONO-PEN VET®) tonometry in New Zealand rabbits treated with Amlodipine®. CES Medicina Veterinaria y Zootecnia. 16(3): 10-27. DOI: 10.21615/cesmvz.6319 DOI: https://doi.org/10.21615/cesmvz.6319
Nicou C.M., Pillai A. & Passaglia C.L. 2021. Effects of acute stress, general anesthetics, tonometry, and temperature on intraocular pressure in rats. Experimental Eye Research. 210: 108727. DOI: 10.1016/j.exer.2021.108727 DOI: https://doi.org/10.1016/j.exer.2021.108727
Okur S., Yanmaz L.E., Senocak M.G., Ersöz U., Gölgeli A., Turgut F., Orhun O.T. & Kocaman Y. 2023. Comparison of intraocular pressure in New Zealand White rabbits measured using rebound and applanation tonometers and four different methods of physical restraint. New Zealand Veterinary Journal. 71(5): 251-258. DOI: 10.1080/00480169.2023.2224277 DOI: https://doi.org/10.1080/00480169.2023.2224277
Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y., Maruyama K., Yuasa T., Akiba M. & Nakazawa T. 2015. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One. 10(4): e0122347. DOI: 10.1371/journal.pone.0122347 DOI: https://doi.org/10.1371/journal.pone.0122347
Pal C.K., Ray M., Sen A., Hajra B., Mukherjee D. & Ghanta A.K. 2011. Changes in intraocular pressure following administration of suxamethonium and endotracheal intubation: influence of dexmedetomidine premedication. Indian Journal of Anaesthesia. 55(6): 573-577. DOI: 10.4103/0019-5049.90611 DOI: https://doi.org/10.4103/0019-5049.90611
Qiu Y., Yang H. & Lei B. 2014. Effects of three commonly used anesthetics on intraocular pressure in mouse. Current Eye Research. 39(4): 365-369. DOI: 10.3109/02713683.2013.845224 DOI: https://doi.org/10.3109/02713683.2013.845224
Quigley H.A., Addicks E.M., Green W.R. & Maumenee A.E. 1981. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Archives of Ophthalmology. 99(4): 635-649. DOI: 10.1001/archopht.1981.03930010635009 DOI: https://doi.org/10.1001/archopht.1981.03930010635009
Raposo A.C., Ofri R., Schaffer D.P., Gomes Júnior D.C., Libório F.A., Martins Filho E.F. & Oriá A.P. 2015. Evaluation of ophthalmic and hemodynamic parameters in capuchin monkeys (Sapajus sp.) submitted to dissociative anesthetic protocols. Journal of Medical Primatology. 44(6): 381-389. DOI: 10.1111/jmp.12200 DOI: https://doi.org/10.1111/jmp.12200
Rauser P., Mrazova M. & Zapletalova J. 2016. Influence of dexmedetomidine-propofol-isoflurane and medetomidine-propofol-isoflurane on intraocular pressure and pupil size in healthy dogs. Veterinarni Medicina. 61(11): 635-642. DOI: 10.17221/115/2016-VETMED DOI: https://doi.org/10.17221/115/2016-VETMED
Rauser P., Mrazova M., Crha M., Urbanova L. & Vychodilova M. 2017. Influence of capnoperitoneum on intraocular pressure in spontaneously breathing dogs undergoing ovariectomy. Veterinarni Medicina. 62(12): 661-667. DOI: 10.17221/89/2017-VETMED DOI: https://doi.org/10.17221/89/2017-VETMED
Ripa M., Schipa C., Kopsacheilis N., Nomikarios M., Perrotta G., De Rosa C., Aceto P., Sollazzi L., De Rosa P. & Motta L. 2022. The impact of steep Trendelenburg position on intraocular pressure. Journal of Clinical Medicine. 11(10): 2844. DOI: 10.3390/jcm11102844 DOI: https://doi.org/10.3390/jcm11102844
Rondeau A., Langlois I., Pang D.S. & Leung V.S.Y. 2020. Development of a sedation assessment scale for comparing the sedative effects of alfaxalone-hydromorphone and ketamine-midazolam-hydromorphone for intravenous catheterization in the domestic rat (Rattus norvegicus). Journal of Exotic Pet Medicine. 35: 117-122. DOI: 10.1053/j.jepm.2020.09.004 DOI: https://doi.org/10.1053/j.jepm.2020.09.004
Shanmugham V. & Subban R. 2022. Capsanthin from Capsicum annum fruits exerts anti-glaucoma, antioxidant, anti-inflammatory activity, and corneal pro-inflammatory cytokine gene expression in a benzalkonium chloride-induced rat dry eye model. Journal of Food Biochemistry. 46(10): e14352. DOI: 10.1111/jfbc.14352 DOI: https://doi.org/10.1111/jfbc.14352
Smith L., Weng H.Y. & Park S.A. 2023. Positional variance of intraocular pressure in conscious New Zealand White rabbits. SSRN. 4417901. Available from: http://dx.doi.org/10.2139/ssrn.4417901. DOI: https://doi.org/10.2139/ssrn.4417901
Souza A.T., Garcia D.O., Nishimura L.T., Magalhães M.L., Mattos-Junior E., Paulino-Junior D., Jorge A.T. & Honsho C.S. 2019. Effects of pneumoperitoneum and Trendelenburg position on intraocular pressure (IOP) in isofluorane-anesthetised cats. Biosci Journal . 35(6): 1899-1906. DOI: 10.1093/bja/aew356 DOI: https://doi.org/10.14393/BJ-v35n6a2019-41904
Tucker L., Almeida D., Wendt-Hornickle E., Baldo C.F., Allweiler S. & Guedes A.G.P. 2022. Effect of 15° reverse Trendelenburg position on arterial oxygen tension during isoflurane anesthesia in horses. Animals (Basel). 12(3): 353. DOI: 10.3390/ani12030353 DOI: https://doi.org/10.3390/ani12030353
Van Wicklin S.A. 2020. Systematic review and meta-analysis of prone position on intraocular pressure in adults undergoing surgery. International Journal of Spine Surgery. 14(2): 195-208. DOI: 10.14444/7029 DOI: https://doi.org/10.14444/7029
Zernii E.Y., Baksheeva V.E., Iomdina E.N., Averina O.A., Permyakov S.E., Philippov P.P., Zamyatnin A.A. & Senin I.I. 2016. Rabbit models of ocular diseases: new relevance for classical approaches. CNS Neurol Disord Drug Targets. 15(3): 267-291. DOI: 10.2174/1871527315666151110124957 DOI: https://doi.org/10.2174/1871527315666151110124957
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kerem Yener, Ünal Yavuz, Ali Hayat, Kübra Dikmen İlginoğlu, Mehmet Salih Karadağ, Mehmet Sıdık Hurma

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino