Artificial intelligence algorithm for the histopathological diagnosis of skin cancer
Keywords:
Skin lesions, Artificial Intelligence, Diagnosis, Neoplasms, Melanoma.Abstract
Introduction: Cutaneous neoplasms are the most common cancers in the world, and have high morbidity rates. A definitive diagnosis can only be obtained after histopathological evaluation of the lesions. Objective: To develop an artificial intelligence program to establish the histopathological diagnosis of cutaneous lesions. Methodology: A deep learning program was built using three neural network architectures: MobileNet, Inception and convolutional networks. A database was constructed using 2732 images of melanomas, basal and squamous cell carcinomas, and normal skin. The validation set consisted of 284 images from all 4 categories, allowing for the calculation of sensitivity and specificity. All images were provided by the Path Presenter website. Results: The sensitivity and specificity of the MobileNet model were 92% (95%CI, 83-100%) and 97% (95%CI, 90-100%), respectively; corresponding figures for the Inception model were 98.3% (95%CI, 86-100%) and 98.8% (95%CI, 98.2-100%); lastly, the sensitivity and specificity of the convolutional network model were 91.6% (95%CI, 73.8-100%) and 95.7% (95%CI, 94.4-97.2%). The maximum sensitivity for the differentiation of malignant conditions was 91%, and specificity was 95.4%. Conclusion: The program developed in the present study can efficiently distinguish between the main types of skin cancer with high sensitivity and specificity.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).