Who will be evicted from Big Brother Brazil?

Forecasting based on social networking

Authors

DOI:

https://doi.org/10.1590/1808-5245.31.142154

Keywords:

forecasting, Big Brother Brasil, sentiment analysis, volumetric analysis, social network analysis

Abstract

The advent of social media has provided individuals with a platform for the expression of opinions and preferences on an extensive range of subjects. The data obtained from social media can be a valuable source of information for the analysis of audience intentions and interests, thereby facilitating the process of informed decision-making and strategy development. One example of human behavior analysis is the examination of popular voting events. In order to address the challenge of forecasting a sequence of events in the context of voting, we propose a novel methodology that employs a data-driven solution, incorporating Twitter/X data and regression models. In this case study, we employed techniques commonly utilized in electoral outcome forecasting, including volumetric and sentiment analysis, to predict the eviction of contestants in Big Brother Brazil. Our experiments resulted in an average absolute error of approximately 11, with an accuracy of 81.25% for predicting evictions and 68.75% for forecasting the classification order.

Downloads

Download data is not yet available.

Author Biographies

William Takahiro Maruyama, Universidade de São Paulo

William Takahiro Maruyama é doutorando pelo Programa de Pós-Graduação em Sistemas de Informação (PPGSI) da Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (EACH-USP). Ele possui mestrado e graduação em Sistemas de Informação pela mesma instituição. Tem atuado na área de Ciência da Computação, com ênfase em Inteligência Artificial, especificamente no tema de análise de redes sociais. Tem experiência em empresa como Analista de Desenvolvimento e como professor substituto no Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP).

Luciano Antonio Digiampietri, Universidade de São Paulo

Luciano Antonio Digiampietri é professor associado na Universidade de São Paulo. Possui graduação em Ciência da Computação pela Universidade Estadual de Campinas (2002), doutorado em Ciência da Computação pela Universidade Estadual de Campinas (2007) e o título de Livre-docente em Informação e Tecnologia pela USP (2015). Desde abril de 2008 é professor pesquisador no Bacharelado em Sistemas de Informação na Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (EACH-USP) e desde 2010 é orientador no Programa de Pós-Graduação em Sistemas de Informação da EACH-USP. Tem experiência na área de Ciência da Computação, com ênfase em Biologia Computacional, Bancos de Dados e Inteligência Artificial, atuando principalmente nos seguintes temas: workflows científicos, bioinformática, processamento de imagens e análise de redes sociais.

References

ALI, Haider; FARMAN, Haleem; YAR, Hikmat; et al. Deep learning-based election results prediction using Twitter activity. Soft Computing, New York, v. 26, n. 16, p. 7535-7543, 2022. Available at: https://doi.org/10.1007/s00500-021-06569-5 . Access: 26 Aug. 2024.

ALVI, Quratulain; ALI, Syed Farooq; AHMED, Sheikh Bilal; et al. On the frontiers of Twitter data and sentiment analysis in election prediction: a review. PeerJ Computer Science, Liverpool, v. 9, p. 1-25, 2023. Available at: https://doi.org/10.7717/peerj-cs.1517 . Access: 26 Aug. 2024.

BERMINGHAM, Adam; SMEATON, Alan. On using Twitter to monitor political sentiment and predict election results. In: WORKSHOP ON SENTIMENT ANALYSIS WHERE AI MEETS PSYCHOLOGY, 2011, Chiang Mai, Thailand. Proceedings […]. [S. l.]: Asian Federation of Natural Language Processing, 2011. p. 2-10.

BRITO, Kellyton Santos; SILVA FILHO, Rogerio Luiz Cardoso; ADEODATO, Paulo Jorge Leitao. A systematic review of predicting elections based on social media data: research challenges and future directions. IEEE Transactions on Computational Social Systems, New York, v. 8, n. 4, p. 819-843, 2021. Available at: https://doi.org/10.1109/TCSS.2021.3063660 . Access: 26 Aug. 2024.

BRITO, Kellyton; PAULA, Natalia; FERNANDES, Manoel; et al. Social media and presidential campaigns - preliminary results of the 2018 Brazilian presidential election. In: ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, 20., 2019, Dubai. Proceedings […]. New York: ACM, 2019. p. 332-341.

CHAUHAN, Priyavrat; SHARMA, Nonita; SIKKA, Geeta. Application of Twitter sentiment analysis in election prediction: a case study of 2019 Indian general election. Social Network Analysis and Mining, New York, v. 13, n. 88, p. 1-29, 2023. Available at: https://doi.org/10.1007/s13278-023-01087-8 . Access: 26 Aug. 2024.

CHAUHAN, Priyavrat; SHARMA, Nonita; SIKKA, Geeta. The emergence of social media data and sentiment analysis in election prediction. Journal of Ambient Intelligence and Humanized Computing, New York, v. 12, n. 2, p. 2601-2627, 2020. Available at: https://doi.org/10.1007/s12652-020-02423-y . Access: 26 Aug. 2024.

FIGUEREDO, Igleson; MARINHO, Leandro; ALVES, Leonardo. Investigando a influência de tweets em programas de votação popular no Brasil. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING, 2015. Recife. Anais […]. Porto Alegre: Sociedade Brasileira de Computação, 2015.

HUTTO, C.; GILBERT, Eric. VADER: A Parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media, Washington, v. 8, n. 1, p. 216-225, 2014. Available at: https://doi.org/10.1609/icwsm.v8i1.14550 . Access: 26 Aug. 2024.

JAIDKA, Kokil; AHMED, Saifuddin; SKORIC, Marko; et al. Predicting elections from social media: a three-country, three-method comparative study. Asian Journal of Communication, London, v. 29, n. 3, p. 252-273, 2018. Available at: https://doi.org/10.1080/01292986.2018.1453849 . Access: 26 Aug. 2024.

KHAN, Asif; ZHANG, Huaping; BOUDJELLAL, Nada; et al. Election prediction on twitter: a systematic mapping study. Complexity, New Jersey, v. 2021, n. 5, p. 1-27, 2021. Available at: https://doi.org/10.1155/2021/5565434 . Access: 26 Aug. 2024.

LIVNE, Avishay; SIMMONS, Matthew; ADAR, Eytan; et al. The party is over here: structure and content in the 2010 election. In: INTERNATIONAL AAAI CONFERENCE ON WEBLOGS AND SOCIAL MEDIA, 5., 2021, Barcelona. Proceedings […].Washington: Association for the Advancement of Artificial Intelligence, 2021. v. 5, p. 201-208.

ROUSIDIS, Dimitrios; KOUKARAS, Paraskevas; TJORTJIS, Christos. Social media prediction: a literature review. Multimedia Tools and Applications, New York, v. 79, n. 9-10, p. 6279-6311, 2019. Available at: https://doi.org/10.1007/s11042-019-08291-9 . Access: 26 Aug. 2024.

SANG, Erik Tjong Kim; BOS, Johan. Predicting the 2011 dutch senate election results with Twitter. In: WORKSHOP ON SEMANTIC ANALYSIS IN SOCIAL MEDIA, 2012, Avignon. Proceedings […].Kerrville: Association for Computational Linguistics, 2012. p. 53-60.

SHARMA, Parul; MOH, Teng-Sheng. Prediction of Indian election using sentiment analysis on Hindi Twitter. In: IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2016, Washington. Proceedings […]. New York: IEEE, 2016. p. 1966-1971.

SKORIC, Marko; POOR, Nathaniel; ACHANANUPARP, Palakorn; et al. Tweets and votes: a study of the 2011 Singapore general election. In:HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 45., 2012, Maui. Proceedings […]. New York: IEEE, 2012. p. 2583-2591.

SOLER, J. M.; CUARTERO, F.; ROBLIZO, M. Twitter as a tool for predicting elections results. In: IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, 2012, Istanbul. Proceedings […]. New York: IEEE, 2012. p. 1194-1200.

TUMASJAN, Andranik; SPRENGER, Timm; SANDNER, Philipp; et al. Predicting elections with twitter: what 140 characters reveal about political sentiment. In: INTERNATIONAL AAAI CONFERENCE ON WEBLOGS AND SOCIAL MEDIA, 4., 2010. Proceedings […].Washington: AAAI, 2010. p. 178-185.

WANG, Lei; GAN, John Q. Prediction of the 2017 French election based on Twitter data analysis. In: COMPUTER SCIENCE AND ELECTRONIC ENGINEERING, 9., 2017, Colchester. Proceedings […]. New York: IEEE, 2017. p. 89-93.

Published

2025-07-14

How to Cite

MARUYAMA, William Takahiro; DIGIAMPIETRI, Luciano Antonio. Who will be evicted from Big Brother Brazil? Forecasting based on social networking . Em Questão, Porto Alegre, v. 31, 2025. DOI: 10.1590/1808-5245.31.142154. Disponível em: https://seer.ufrgs.br/index.php/RevistaGauchadeEnfermagem/ojs/index.php/EmQuestao/article/view/142154. Acesso em: 29 aug. 2025.

Issue

Section

Article

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 > >> 

You may also start an advanced similarity search for this article.