Análise de áreas de coerência entre estações conjugadas afetadas pela Anomalia Magnética do Atlântico Sul

Autores/as

DOI:

https://doi.org/10.22456/1807-9806.140792

Palabras clave:

conjugate station, South Atlantic Magnetic Anomaly, correlation coefficients, wavelet coherence, space geophysic, coherence areas

Resumen

La Anomalía Magnética del Atlántico Sur (SAMA) es una región en el Océano Atlántico Sur donde el campo magnético de la Tierra es significativamente más débil que en otras partes del mundo. Esta anomalía ha sido de interés para los científicos e investigadores que estudian el campo magnético de la Tierra. El SAMA puede afectar los sistemas de navegación y las operaciones de los satélites, y es un área de estudio importante para comprender la dinámica del campo magnético de la Tierra. Este artículo investiga las características de la señal de estaciones conjugadas influenciadas por el SAMA en una tormenta geomagnética moderada a través del análisis de registros de estaciones geomagnéticamente conjugadas que interconectan ambos hemisferios. Este estudio utiliza las componentes magnéticas horizontales medidas en el mismo intervalo de tiempo en dos longitudes típicas: la región América-SAMA y la región Asia-Pacífico. Este procedimiento nos permite hacer un análisis comparativo entre regiones. Nuestro procedimiento utiliza los datos registrados simultáneamente en cuatro pares de estaciones conjugadas para caracterizar el dominio de coherencia de la variabilidad magnética que rodea las estaciones conjugadas. Aquí presentamos y discutimos los primeros mapas de la región SAMA, que corresponde al área de coherencia en latitudes bajas. De hecho, este concepto de área de coherencia se refiere a los bordes (área geométrica cercana al suelo) alrededor del punto conjugado, donde los fenómenos geofísicos generalmente exhiben un comportamiento fluctuante similar. Para calcular dichas áreas se utilizó la técnica de coeficientes de correlación, utilizando la componente H del campo geomagnético. Nuestros principales resultados indican que las áreas de la región de Asia y el Pacífico son similares en tamaño y forma, lo que caracteriza patrones típicos. En la región América-SAMA, las áreas de coherencia de las estaciones conjugadas no son similares en forma y tamaño. Estas diferencias entre áreas de coherencia podrían deberse a las características únicas de la región, es decir, presenta una conductividad ionosférica mejorada. Además, las estaciones geomagnéticas dentro de una amplia zona de América del Sur, involucrando la región de Santa María, presentarán, en principio, fluctuaciones magnéticas con similitud en los registros.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Badhwar, G.D. 1997. Drift rate of the south Atlantic anomaly. Journal of Geophysical Research: Space Physics, 102(A2): 2343-2349. https://doi.org/10.1029/96JA03494 DOI: https://doi.org/10.1029/96JA03494

Baker, K.B. & Wing S. 1989. A new magnetic coordinate system for conjugate studies at high latitudes. Journal of Geophysical Research, 94(a7): 9139. https://doi.org/10.1029/JA094iA07p09139 DOI: https://doi.org/10.1029/JA094iA07p09139

Belon, A.E.; Maggs, J.E.; Davis, T.N; Mather, K.B.; Glass, N.W.; Hughes, G.F. 1969. Conjugacy of visual auroras during magnetically quiet periods. Journal of Geophysical Research, 74(1): 1-28. https://doi.org/10.1029/JA074i001p00001 DOI: https://doi.org/10.1029/JA074i001p00001

Bevington, P. 1969. Data reduction and error analysis for the physical sciences. (1st. ed.). McGrawn-Hill.

Bhavnani, K.H. & Hein, C.A. 1994. An improved algorithm for computing altitude dependent corrected geomagnetic coordinates. Phillips Lab., Geophys. Dir., Hanscom Air Force Base, Mass., PL-TR-94-2310.

Camacho, E.; Benyosef L.; Mendes O.; Domingues. M. 2023. Pc5-pulsations in the South Atlantic Magnetic Anomaly. Brazilian Journal Physics, 53(16): 12. https://doi.org/10.1007/s13538-022-01229-x DOI: https://doi.org/10.1007/s13538-022-01229-x

Campbell, W.H. 2003. Introduction to geomagnetic fields. New Jersey: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139165136

Campuzano, S.A.; Gómez-Paccard, M.; Pavón-Carrasco, F.J.; Osete M.L. 2019. Emergence and evolution of the South Atlantic Anomaly revealed by the new paleomagnetic reconstruction SHAWQ2k. Earth and Planetary Science Letters, 512: 17-26. https://doi.org/10.1016/j.epsl.2019.01.050 DOI: https://doi.org/10.1016/j.epsl.2019.01.050

Caraballo, R.; Bettucci, L.S; Tancredi G. 2013. Geomagnetically induced currents in the Uruguayan high-voltage power grid. Geophysical Journal International, 195(2): 844-853. https://doi.org/10.1093/gji/ggt293 DOI: https://doi.org/10.1093/gji/ggt293

De Santis, A. & Qamili, E. 2010. Equivalent monopole source of the geomagnetic south Atlantic anomaly. Pure and Applied Geophysics, 167(3): 339-347. https://doi.org/10.1007/s00024-009-0020-5 DOI: https://doi.org/10.1007/s00024-009-0020-5

De Santis, A.; Qamili, E. Spada; G.; Gasperini. P. 2012. Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection? Journal of Atmospheric and Solar-Terrestrial Physics, 74: 129-135. https://doi.org/10.1016/j.jastp.2011.10.015. DOI: https://doi.org/10.1016/j.jastp.2011.10.015

De Santis, A.; Qamili E.; Wu L. 2013. Toward a possible next geomagnetic transition? Natural Hazards and Earth System Sciences, 13: 3395-3403. https://doi.org/10.5194/nhess-13-3395-2013 DOI: https://doi.org/10.5194/nhess-13-3395-2013

Denardini, C.M.; Chen, S.S.; Resende L.C.A.; Moro, J.; Bilibio A.V.; Fagundes, P.R.; Gende, M.A.; Cabrera, M.A.; Bolzan, M.J.A.; Padilha, A.L.; Schuch, N.J.; Hormaechea, J.L.; Alves, L.R.; Barbosa Neto, P.F.; Nogueira, P.A.B.; Picanço, G.A.S.; Bertollotto, T.O. 2018. The Embrace magnetometer network for South America: Network description and its qualification. Radio Science, 53(3): 288-302. https://doi.org/10.1002/2017RS006477 DOI: https://doi.org/10.1002/2017RS006477

Domingos, J.; Jault, D.; Pais, M.A.; Mandea, M. 2017. The South Atlantic Anomaly throughout the solar cycle. Earth and Planetary Science Letters, 473: 154-163. https://doi.org/10.1016/j.epsl.2017.06.004 DOI: https://doi.org/10.1016/j.epsl.2017.06.004

Finlay, C.; Kloss, C.; Olsen N.; Hammer, M.; Tøffner-Clausen L.; Grayver, A.; Kuvshinov A. 2020. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth, Planets and Space, 72(156): 1-31. https://doi.org/10.1186/s40623-020-01252-9 DOI: https://doi.org/10.1186/s40623-020-01252-9

Hajkowicz, L. 2006. Magnetoconjugate phenomena in Alaska and Macquarie s., Australia in 2003: position of the global maximum iso-aurorae. Annales Geophysicae, 24: 2611-2617. https://doi.org/10.5194/angeo-24-2611-2006 DOI: https://doi.org/10.5194/angeo-24-2611-2006

Hartinger, M.D.; Xu, Z.; Clauer, C.R.; Yu, Y.; Weimer, D.R.; Kim, H. Pilipenko, V.; Welling, D.T.; Behlke, R.; Willer, A.N. 2017. Associating ground magnetometer observations with current or voltage generators. Journal of Geophysical Research: Space Physics, 122(7): 7130-7141. https://doi.org/10.1002/2017JA024140 DOI: https://doi.org/10.1002/2017JA024140

Hartmann, G.A. & Pacca, I.G. 2009. Time evolution of the South Atlantic Magnetic Anomaly. Anais da Academia Brasileira de Ciências, 81(2): 243-255. https://doi.org/10.1590/S0001-37652009000200010 DOI: https://doi.org/10.1590/S0001-37652009000200010

Heynderickx, D. 1996. Comparison between methods to compensate for the secular motion of the south atlantic anomaly. Radiation Measurements, 26(3): 369-373. https://doi.org/10.1016/1350-4487(96)00056-X DOI: https://doi.org/10.1016/1350-4487(96)00056-X

Heres, W. & Bonito, N.A. 2007. An alternative method of computing altitude adjustment [sic] corrected geomagnetic coordinates as applied to IGRF Epoch 2005. Air Force Research Lab., Space Vehicles Dir., Hanscom Air Force Base, Mass., HA-TR-2007-1190. DOI: https://doi.org/10.21236/ADA481845

Kamide, Y. & Chian, A. 2007. Handbook of the Solar-Terrestrial Environment. Berlin: Springer-Verlag. 395p. https://doi.org/10.1007/978-3-540-46315-3 DOI: https://doi.org/10.1007/978-3-540-46315-3

Kendall, M.G. & Stuart, A. 1979. The advanced theory of statistics. London: Charles Griffin and Co.

Kivelson, R. & Russell, C.T. 1995. Introduction to Space Physics. Cambridge: Cambridge University. 568p. https://doi.org/10.1017/9781139878296 DOI: https://doi.org/10.1017/9781139878296

Klausner, V.; Mendes, O.; Papa, A; Domingues M. 2009. Main patterns of the geomagnetic field: A preliminary case study using principal component analysis. Physicae, 11: 1833-1838. https://doi.org/10.1190/sbgf2009-386 DOI: https://doi.org/10.1190/sbgf2009-386

Laundal, K. & Richmond, A.D. 2017. Magnetic coordinate systems. Space Science Reviews, 206 (1-4): 27-59. https://doi.org/10.1007/s11214-016-0275-y DOI: https://doi.org/10.1007/s11214-016-0275-y

Liu, Y.; Fraser, B. Liu, R.; Ponomarenko, P. 2003. Conjugate phase studies of ULF waves in the Pc5 band near the cusp. Journal of Geophysical Research: Space Physics, 108 (A7): 37-42. https://doi.org/10.1029/2002JA009336 DOI: https://doi.org/10.1029/2002JA009336

Maffei, S.; Eggington, J.; Livermore, P. Mound, J. Sanchez, S. Eastwood, J.; Freeman, M. 2023. Climatological predictions of the auroral zone locations driven by moderate and severe space weather events. Scientific Reports, 13: 779. https://doi.org/10.1038/s41598-022-25704-2 DOI: https://doi.org/10.1038/s41598-022-25704-2

Minatoya, H.; Sato, N.; Saemundsson, T.; Yoshino, T. 1996. Large displacements of conjugate auroras in the midnight sector. Journal of Geomagnetism and Geoelectricity, 48 (7): 967-975. https://doi.org/10.5636/jgg.48.967 DOI: https://doi.org/10.5636/jgg.48.967

Mtumela, Z.; Stephenson, J.A.; Walker, A.D. 2015. An investigation of the nature of a Pc5 pulsation event using SuperDARN and magnetometer data. South African Journal of Science, 111 (3/4): 1-7. https://doi.org/10.17159/sajs. 2015/20130391 DOI: https://doi.org/10.17159/sajs.2015/20130391

Nagata, T. 1967. Geomagnetic conjugacy between the Antarctic and the Arctic. In: Proceedings of the International Symposium on Pacific Antarctic Sciences Pacific, Pacific Science Congress, 11th., Tokyo, pp. 65-80. National Institute of Polar Research Repository.

Nagata, T.; Kokubun, S.; Fukushima, N. 1962. Similarity and simultaneity of magnetic disturbance in the Northern and Southern hemispheres. Journal of the Physical Society of Japan, 17(A-I): 17-35.

Obana, Y.; Yoshikawa, A.; Olson, R.; Morris, J.; Fraser, B.; Yumoto, K. 2005. North-South asymmetry of the amplitude of high-latitude Pc3-5 pulsations: Observations at conjugate stations. Journal of Geophysical Research: Space Physics, 110 (A10): A10214, 1-9. https://doi.org/10.1029/2003JA010242 DOI: https://doi.org/10.1029/2003JA010242

Oguti, T. 1969. Conjugate point problems. Space Science Reviews, 9: 745-804. https://doi.org/10.1007/BF00226262. DOI: https://doi.org/10.1007/BF00226262

Oliva, D., Meirelles, M.; Papa, A. 2014. A study of Pc4-5 geomagnetic pulsations in the Brazilian sector. Physics Space, 12 (A): 1-17. https: //doi.org/10.48550/arXiv.1404.4321

Ondoh, T. & Maeda, H. 1962. Geomagnetic-storm correlation between the northern and southern hemispheres. Journal of Geomagnetism and Geoelectricity, 14(1): 22-32. https://doi.org/10.5636/jgg.14.22 DOI: https://doi.org/10.5636/jgg.14.22

Ono, T. 1987. Temporal variation of the geomagnetic conjugacy in Syowa Iceland pair. In: Memoirs of National Institute of Polar Research. Special Issue, Volume 48.

Pavón-Carrasco, F.J. & De Santis, A. 2016. The South Atlantic Anomaly: The Key for a Possible Geomagnetic Reversal. Frontiers in Earth Science, 4(40): 1-9. https://doi.org/10.3389/feart.2016.00040. DOI: https://doi.org/10.3389/feart.2016.00040

Pinto, O. & Gonzalez, W. 1989. Energetic electron precipitation at the south Atlantic magnetic anomaly: a review. Journal of Atmospheric and Terrestrial Physics, 51(5): 351-365. https://doi.org/10.1016/0021-9169(89) 90117-7 DOI: https://doi.org/10.1016/0021-9169(89)90117-7

Reiff, P.H. 1983. The use and misuse of statistical analysis. In: Carovillano, R.L., Forbes, J.M. (Eds.), Solar-Terrestrial Physics. Astrophysics and Space Science Library, vol 104: pp. 493-522. https://doi.org/10.1007/978-94-009-7194-3_20 DOI: https://doi.org/10.1007/978-94-009-7194-3_20

Russell, C.T.; Luhmann, J.G.; Strangeway, R.J. 2016. Space Physics an introduction (1st. ed.). Cambridge: Cambridge University. 512p. https://doi.org/10.1017/9781316162590

Sanchez, S.; Wicht, J.; Baerenzung, J. 2020. Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations. Earth, Planets and Space, 72(157): 1-20. https://doi.org/10.1186/s40623-020-01279-y DOI: https://doi.org/10.1186/s40623-020-01279-y

Sato, N.; Kadokura, A.; Ebihara, Y; Deguchi, H.; Saemundsson, T. 2005. Tracing geomagnetic conjugate points using exceptionally similar synchronous auroras. Geophysical Research Letters, 32 (17): 23. https://doi.org/10.1029/ 2005GL023710 DOI: https://doi.org/10.1029/2005GL023710

Shepherd, S. 2014. Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations. Journal of Geophysical Research: Space Physics, 119(9): 7501-752. https://doi.org/10.1002/2014JA020264 DOI: https://doi.org/10.1002/2014JA020264

Takasaki, S.; Sato, N; Kadokura, A.; Yamagishi, H.; Kawano, H.; Ebihara, Y.; Tanaka, Y. 2008. Interhemispheric observations of field line resonance frequencies as a continuous function of ground latitude in the auroral zones. Polar Science, 2(2): 73-86. https://doi.org/10.1016/j.polar.2008.05.003 DOI: https://doi.org/10.1016/j.polar.2008.05.003

Terra-Nova, F.; Amit, H.; Choblet, G. 2019. Preferred locations of weak surface field in numerical dynamos with heterogeneous core-mantle boundary heat flux: Consequences for the South Atlantic Anomaly. Geophysical Journal International, 217(2): 1179-1199. https://doi.org/10.1093/gji/ggy519 DOI: https://doi.org/10.1093/gji/ggy519

Timoçin, E.; Ünal, I.; Tulunay, Y.; Göker, U.D. 2018. The effect of geomagnetic activity changes on the ionospheric critical frequencies (foF2) at magnetic conjugate points. Advances in Space Research, 62(4): 821-828. https://doi.org/10. 1016/j.asr.2018.05.035 DOI: https://doi.org/10.1016/j.asr.2018.05.035

Trivedi, N.; Pathan, B.; Schuch, N.J.; Barreto, M.; Dutra, L. 2005. Geomagnetic phenomena in the South Atlantic anomaly region in Brazil. Advances in Space Research, 36(10): 2021-2024. https://doi.org/10.1016/j.asr.2004.09.020 DOI: https://doi.org/10.1016/j.asr.2004.09.020

Vernov, S. & Chudakov, A. 1960. Terrestrial corpuscular radiation and cosmic rays. Space Research, 125(1): 751-796.

Wescott, E. 1961. Magnetic variations at conjugate points. Journal of Geophysical Research, 66(6): 1789-1792. https://doi.org/10.1029/JZ066i006p01789 DOI: https://doi.org/10.1029/JZ066i006p01789

Wescott, E. 1966. Magnetoconjugate phenomena. Space Science Reviews, 5: 507-561. https://doi.org/10.1007/BF00240576 DOI: https://doi.org/10.1007/BF00240576

Wescott, E. & Mather, K. 1965a. Magnetic conjugacy at very high latitude; shepherd Bay-Ccott base relationship. Planetary and Space Science, 13(4): 303-324. https://doi.org/10.1016/0032-0633(65)90005-X DOI: https://doi.org/10.1016/0032-0633(65)90005-X

Wescott, E. & Mather, K. 1965b. Magnetic conjugacy from L = 6 to L = 1.4 : 2. midlatitude conjugacy. Journal of Geophysical Research, 70(1): 43–47. https://doi.org/10.1029/JZ070i001p00043 DOI: https://doi.org/10.1029/JZ070i001p00043

Wescott, E. & Mather, K. 1965c. Magnetic conjugacy from L = 6 to L = 1.4: 1. auroral zone: Conjugate area, seasonal variations, and magnetic coherence. Journal of Geophysical Research, 70(1): 29-42. https://doi.org/10.1029/ JZ070i001p00029 DOI: https://doi.org/10.1029/JZ070i001p00029

Ye, Y.; Zou, H.; Zong, Q.; Chen, H.; Wang, Y.; Yu, X.; Shi, W. 2017. The Secular Variation of the Center of Geomagnetic South Atlantic Anomaly and Its Effect on the Distribution of Inner Radiation Belt Particles. Space Weather, 15(11): 1548-1558. https://doi.org/10.1002/2017SW001687 DOI: https://doi.org/10.1002/2017SW001687

Yoshida, S.; Ludwig, G.H.; Van Allen, J.A. 1960. Distribution of trapped radiation in the geomagnetic field. Journal of Geophysical Research, 65(3): 807-813. https://doi.org/10.1029/JZ065i003p00807 DOI: https://doi.org/10.1029/JZ065i003p00807

Yumoto, K.; Saito, T.; Tanaka, Y. 1985. Low-latitude Pc3 magnetic pulsations observed at conjugate stations (L ∼ 1.5). Journal of Geophysical Research: Space Physics, 90(A12): 12201-12207. https://doi.org/10.1029/JA090iA12p12201 DOI: https://doi.org/10.1029/JA090iA12p12201

Descargas

Publicado

2024-10-15

Cómo citar

Camacho Linares, E., Benyosef, L., Mendes, O., & Oliveira Domingues, M. (2024). Análise de áreas de coerência entre estações conjugadas afetadas pela Anomalia Magnética do Atlântico Sul. Pesquisas Em Geociências, 51(3), e140792. https://doi.org/10.22456/1807-9806.140792