Prognóstico das alterações na topografia no impacto das inundações (Itajubá/MG – Brasil)
DOI:
https://doi.org/10.22456/1807-9806.137981Palavras-chave:
HEC-RAS, mapeamento de inundações, simulação bidimensional, inundaçãoResumo
Com o aumento da urbanização, alguns tomadores de decisão acabam por realizar atitudes inadequadas que afetam o ambiente, por falta de conhecimento técnico ou interesse pessoal. No caso de áreas de inundação recorrente, a ocupação irregular pode causar uma série de problemas ambientais e econômicos. O Distrito Industrial do município de Itajubá-MG vem sofrendo ocupação acelerada e alterações morfométricas acentuadas. Visando prever o impacto dessas mudanças no uso e ocupação, este trabalho tem como objetivo traçar o diagnóstico das enchentes entre 2005 e 2021 e projetar um cenário futuro até o ano de 2030. Este artigo tem como objetivo avaliar os impactos causados pelas cheias. Foi utilizado o software HEC-RAS para simular as cinco propagações de cheias em seis cenários de ocupação. As simulações foram analisadas em oito locais de controle ao longo da área de estudo. Os resultados mostraram que, ao longo dos anos, em decorrência de uma ocupação crescente desta área, é prevista a ocorrência de represamentos de enchentes na região a montante dos aterros, mas devido à proporcionalidade da área, essas alturas de represamento são consideradas irrelevantes, não amplificando os danos causados pelas enchentes e, em alguns casos, levando à diminuição da área inundada no Distrito Industrial.
Downloads
Referências
Almeida, L.T.; Abreu, M.C.; Fraga, M.S.; Silva, D.D. & Cecílio, R.A. 2017. Morphometric aspects related to the study of floods in the Sapucaí river basin, Minas Gerais. Nativa, 5(3): 69-174. https://doi.org/10.1590/0102-7786334004. DOI: https://doi.org/10.31413/nativa.v5i3.4327
Amarjouf, N.; Oujidi, M.; Meijer, D. & Klop, W. 2019. Evaluating ephemeral watercourse discharges by hydrologichydraulic modelling: application to the Kert River basin. ISH Hydraulique Engeneering Journal, 1(11). https://doi.org/10.1080/09715010.2019.1646166. DOI: https://doi.org/10.1080/09715010.2019.1646166
Andrade, M.A.; Mello, C.R.D., & Beskow, S. 2013. Hydrological simulation in a hydrographic basin representative of the Oxisols in the Alto Rio Grande region, MG. Brazilian Magazine on Agricultural and Environmental Engineering, 17(1): 69-76. https://doi.org/10.1590/S1415-43662013000100010. DOI: https://doi.org/10.1590/S1415-43662013000100010
Aquino, R.F.; Silva, M.L.N.; Freitas, D.A.F.; CURI, N.; Melo, C.R. & Avanzi, J.C. 2012. Spatial variability of the rainfall erosivity in southern region of Minas Gerais State, Brazil. Ciência e Agrotecnologia, 36(5): 533-542. https://doi.org/10.1590/S1413-70542012000500006. DOI: https://doi.org/10.1590/S1413-70542012000500006
Atallah, M.; Hazzab, A.; Seddini, A.; Ghenaim, A. & Korichi, K. 2018. Inundation maps for extreme food events: case study of Sidi Bel Abbes city, Algeria. Journal of Water and Land Development, 37(IV-VI): 19-27. https://doi.org/10.2478/jwld-2018-0021. DOI: https://doi.org/10.2478/jwld-2018-0021
Aureli, F.; Prost, F.; Vacondio, R.; Dazzi, S. & Ferrari, A. 2020. A GPU-accelerated shallow-water scheme for surface runoff simulations. Water, 12(3): 637-652. https://doi.org/10.3390/w12030637. DOI: https://doi.org/10.3390/w12030637
Barbosa, A.A. 2000. Report of the Technical Assessment Commission for the Restoration and Urbanization of the Sapucaí River Banks and its Tributaries of the Urban Area. UNIFEI, 1(1): 61-80.
Barbosa, A.A., Oliveira, G.M. & Oliveira, T.J. 2015. Report of the Technical Assessment Commission for the Restoration and Urbanization of the Sapucaí River Banks and its Tributaries of the Urban Area. Revista Meio Ambiente e Sustentabilidade Itajubá, 9(4): 126-140.
Basnet, K. & Acharya, D. 2019. Flood Analysis at Ramghat, Pokhara, Nepal Using HEC-RAS. Technical Journal, 1(1): 41-53. https://doi.org/10.3126/tj.v1i1.27591. DOI: https://doi.org/10.3126/tj.v1i1.27591
Brazil, Federal Constitution. (2001). Law No. 10.257 of July 10, 2001. Regulates articles 182 and 183, Federal Constitution, establishes general guidelines for urban policy and other measures, Art. 37. Official Gazette of the Federative Republic of Brazil, Brasília. Available at, www.planalto.gov.br
Brunner, G.W. 2016. HEC-RAS River Analysis System. HYDRAULIC Reference Manual. Version 5.0. Hydrologic Engineering Center. Available at https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf.
Carvalhais, R.M. 2017. Geotechnical behavior of airport landfills on compressible foundations: studies and analysis of the landfill at Itajubá/MG airport. (Master's dissertation). Geotecnia, Universidade Federal de Ouro Preto, Minas Gerais. https://www.repositorio.ufop.br/handle/123456789/7361
Chow, V.T. 1959. Open: channel hydraulics. New York: McGraw-Hill. http://web.ipb.ac.id/~erizal/hidrolika.
Costa Bile, P.; Constanzo, C.; De Lorenzo, G. & Macchione, F. 2020. Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model. Journal of Hydrology, 580: 124231. https://doi.org/10.1016/j.jhydrol.2019.124231. DOI: https://doi.org/10.1016/j.jhydrol.2019.124231
Cunha, A.P.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A. & Ribeiro-Neto, G. 2019. Extreme drought events over Brazil from 2011 to 2019. Atmosphere, 10(11), 642-656. https://doi.org/10.3390/atmos10110642. DOI: https://doi.org/10.3390/atmos10110642
Ezzine, A.; Saidi, S.; Hermassi, T.; Kammessi, I.; Darragi, F., & Rajhi, H. 2020. Flood mapping using hydraulic modeling and Sentinel-1 image: Case study of Medjerda Basin, northern Tunisia. The Egyptian Journal of Remote Sensing and Space Science, 23(3): 303-310. https://doi.org/10.1016/j.ejrs.2020.03.001. DOI: https://doi.org/10.1016/j.ejrs.2020.03.001
Faria, C.E.T. & Barbosa, A.A. 2020. Flood patches in the municipality of Itajubá-MG. ForScience, 8(2): 594-606. https://doi.org/10.29069/forscience.2020v8n2.e594. DOI: https://doi.org/10.29069/forscience.2020v8n2.e594
Instituto Brasileiro de Geografia e Estatística – IBGE. 2021. Cities. Available at https://cidades.ibge.gov.br/brasil/mg/itajuba/panorama. Accessed in September 2021.
Prefeitura Municipal de Itajubá. 2021. City Hall of Itajubá – Master plan. Available at http://www.itajuba.mg.gov.br/secretariaspmi/semup/plano-diretor/
Lima, J.C. 2003. Flood Risk and Damage Assessment and the Impact of Adopting Non-Structural Measures in Itajubá/MG. (Master´s dissertation). Department of Hydraulic Engineering and Water Resources, Federal University of Minas Gerais, Belo Horizonte, Brazil. https://www.smarh.eng.ufmg.br/diss_defesas_detalhes.php?aluno=43.
Maroneze, MM.; Zepka, L.Q.; Vieira, J.G.; Queiroz, M.I. & Jacob-Lopes, E. 2014. Phosphorus Removal Technology: Element Management in Industrial Waste. Revista Ambiente & Água, 9(3): 445-458. https://doi.org/10.4136/ambi-agua.1403. DOI: https://doi.org/10.4136/ambi-agua.1403
Ly, S.; Kim, L.; Demerre, S. & Heng, S. 2018. Flood mapping along the Lower Mekong River in Cambodia. Engineering Journal, 22(1): 269-278. https://doi.org/10.4186/ej.2018.22.1.269. DOI: https://doi.org/10.4186/ej.2018.22.1.269
Marciano, A.G.; Barbosa, A.A. & Moni, A.P.S. 2018. Study of scenarios in the simulation of flood events on the Piranguçu River and its influence on the industrial district of Itajubá – MG. Brazilian Magazine of Renewable Energies, 7(1): 1-5. https://doi.org/10.5380/rber.v7i1.57961. DOI: https://doi.org/10.5380/rber.v7i1.57961
Marciano, A.G. 2019. Hydrodynamic modeling with the integration of the mapping of the Sapucaí river floods in the municipality of Itajubá/MG. (Master's dissertation). Water Engineering – Federal University of Itajubá, Minas Gerais. https://repositorio.unifei.edu.br/jspui/handle/123456789/1968.
Martins, C.M.S.; Silva, B.C. & Pons, N.A.D. 2019. Estimate of flooding in watersheds based on precipitation forecasts by set. Brazilian Journal of Physical Geography, 12(5): 1713-1729. https://doi.org/10.26848/rbgf.v12.5.p1713-1729. DOI: https://doi.org/10.26848/rbgf.v12.5.p1713-1729
Mello, C.R.; Sá, M.A.C.; Curi, N.; Mello, J.M.; Viola, M.R. & Silva, A.M. 2007. Monthly and annual erosivity in the State of Minas Gerais. Brazilian Agricultural Research, 42(4): 537-545. https://doi.org/10.1590/S0100-204X2007000400012. DOI: https://doi.org/10.1590/S0100-204X2007000400012
Mendes, N.G.S.; Cecílio, R.A.; Zanetti, S.S. & dos Santos, C.A. 2019. Relationship between the streamflows and precipitations in Itapemirim River Basin. Floresta, 49(2): 171-180. https:// doi.org/10.5380/rf.v49i2.53994. DOI: https://doi.org/10.5380/rf.v49i2.53994
Moni, A.P.S. 2006. Preparation of Flood Spots for the Municipality of Itajubá, Using GIS. (Master's Dissertation). Department of Energy Engineering – Federal University of Itajubá, Minas Gerais. https://repositorio.unifei.edu.br/jspui/handle/123456789/1968.
Moraes, J.M. 2003. Rio Sapucaí – Path of the view of a dawn. ACR & Associados, 1(1): 128-138.
Ongdas, N.; Akiyanova, F.; Karakulov, Y.; Muratbayeva, A. & Zinabdin, N. 2020. Application of HEC-RAS (2D) for food hazard maps generation for Yesil (Ishim) river in Kazakhstan. Water, 12(10): 2672-2682. https://doi.org/10.3390/w12102672. DOI: https://doi.org/10.3390/w12102672
Paz, A.R.; Bravo, J.M.; Allasia, D.; Collischonn, W., & Tucci, C.E.M. 2010. Large-scale hydrodynamic modeling of a complex river network and floodplains. Journal of Hydrologic Engineering, 15(2): 152-165. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000162. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000162
Pinheiro, M.V. 2005. Technical and historical evaluation of the floods in Itajubá – MG. (Master's Dissertation). Department of Energy Engineering – Federal University of Itajubá, Minas Gerais.
Quirogaa, V.M.; Kurea, S.; Udoa, K. & Manoa, A. 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Revista Iberoamericana del Água, 16(3): 25-33. https://doi.org/10.1016/j.riba.2015.12.001. DOI: https://doi.org/10.1016/j.riba.2015.12.001
Ramiaramanana, F.N. & Teller, J. 2021. Urbanization and Floods in Sub-Saharan Africa: Spatiotemporal Study and Analysis of Vulnerability Factors – Case of Antananarivo Agglomeration (Madagascar). Water, 13(2): 149. https://doi.org/10.3390/w13020149. DOI: https://doi.org/10.3390/w13020149
Reboita, M.S.; Gan, M.A.; Rocha, R.P. & Ambrizzi, T. 2010. Precipitation regimes in South America, a literature review. Brazilian Journal of Meteorology, 25(2): 185-204. https://doi.org/10.1590/S0102-77862010000200004. DOI: https://doi.org/10.1590/S0102-77862010000200004
Reboita, M.S.; Marietto, D.M.G.; Souza, A. & Barbosa, M. 2017. Atmospheric characterization when extreme rain events occur in the southern region of Minas Gerais. Brazilian Journal of Climatology, 13(21): 20-37. https://doi.org/10.5380/abclima.v21i0.47577. DOI: https://doi.org/10.5380/abclima.v21i0.47577
Reboita, M.S.; Silva, B.C. & Silva, M.V. 2019. Regression models applied to river level prediction in Sio Sapucaí in Itajubá-MG. Yearbook of the Institute of Geosciences, 42(2): 217-229. http://dx.doi.org/10.11137/2019_2_217_229. DOI: https://doi.org/10.11137/2019_2_217_229
Reis, J.B.C.; Pons, N.A.D. & Lopes, E.S.S. 2016. Flood monitoring and warning in the municipality of Itajubá (MG) by polynomial regression. Geociências, 35(1): 134-148. http://www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/8998.
Reis, J.B.C. 2014. Flood monitoring and warning in the municipality of Itajubá (MG) through mathematical models. (Master's Dissertation). Postgraduate Program in Science in the Environment and Water Resources at the Federal University of Itajubá, Minas Gerais. https://repositorio.unifei.edu.br/jspui/handle/123456789/755.]
Rogers B.C.; Bertram, N.B.; Gersonius, A.; Gunn, R.; Löwe, C.; Murphy, K. & Arnbjerg-Nielsen K. 2019. An interdisciplinary and catchment approach to enhancing urban flood resilience: A Melbourne case. Philosophical Transactions A, 378(17): 1-25. https://doi.org/10.1098/rsta.2019.0201. DOI: https://doi.org/10.1098/rsta.2019.0201
Salman, A.M., & Li, Y. 2018. Flood risk assessment, future trend modeling, and risk communication: a review of ongoing research. Natural Hazards Review, 19(3): 1-21. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000294. DOI: https://doi.org/10.1061/(ASCE)NH.1527-6996.0000294
Santos, B.C.; Souza, P.H.; Sanches, R.G.; Bolleli, T.M. & Tech, A.R.B. 2021. Flood monitoring and warning in the municipality of Itajubá (MG) through mathematical models. Geography Notebook, 31(2): 168-186. https://doi.org/10.5752/p.2318-2962.2021v31nesp2p168. DOI: https://doi.org/10.5752/P.2318-2962.2021v31nesp2p168
Sengenberger, W. & Pike, F. 1999. Industrial districts and local economic recovery: research and policy issues. Entrepreneurs and jobs in the new productive territories: the case of the third Italy. DP & A, 1(1): 101-146.
Servidoni, L.E.; Ayer, J.E.B.; Estella, P.V.M.; de Oliveira, G.H. & Mincato, R.L. 2021. Morphometric and hydrological attributes of the Alto Sapucaí Hydrographic Basin, Minas Gerais. Department of Geography Magazine, 41(2): 1-14. https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.169817. DOI: https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.169817
Sgarbi, G.N.C. & Dardenne, M.A. 1996. Climatic evolution of Gondwana in south-central Brazil and its continental geological records during the Mesozoic, emphasizing the Alto Paranaíba ardo, the NNE edge of the Paraná Basin and the southern portion of the Sanfranciscana basin in the west of the state of Minas Gerais. Geonomos, 4(1): 21-49. https://doi.org/10.18285/geonomos.v4i1.193. DOI: https://doi.org/10.18285/geonomos.v4i1.193
Shustikova, I.; Domeneghetti, A.; Neal, J.C.; Bates, P. & Castellarin, A. 2019. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14): 1769-1782. https://doi.org/10.1080/02626667.2019.1671982. DOI: https://doi.org/10.1080/02626667.2019.1671982
Silva, B.D.M. 2019. Hydrological and hydrodynamic modeling for flood assessment in the urban area of Caruaru, PE. (Master's Dissertation). Federal University of Pernambuco, Pernambuco. https://repositorio.ufpe.br/handle/123456789/36834.
Silva, E.D. & Reboita, M.S. 2013. Estudo da Precipitação no Estado de Minas Gerais - MG. Brazilian Journal of Climatology, 13(1): 120-136. https://doi.org/10.5380/abclima.v13i0.33345. DOI: https://doi.org/10.5380/abclima.v13i0.33345
Sparovek, G.; Van Lier, Q.J. & Neto, D. 2007. Computer assisted Köppen climate classification: case study for Brazil. International Journal Climatology, 27(2): 257-266. https://doi.org/10.1002/joc.1384. DOI: https://doi.org/10.1002/joc.1384
Tamiru, H. & Dinka, M.O. 2021. Application of ANN and HEC-RAS model for flood simulation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36(1): 1-14. https://doi.org/10.1016/j.ejrh.2021.100855. DOI: https://doi.org/10.1016/j.ejrh.2021.100855
Torres, F.L.R.; Souza, G.W.F.; Kuki, C.A.C.; Vasconcellos, B.T.C.; Freitas, A.A.; Nascimento, P.S. & Reboita, M.S. 2020. Validation of different precipitation databases in the Sapucaí and São Francisco Hydrographic basins. Brazilian Journal of Climatology, 27 (1): 368-404. https://doi.org/10.5380/abclima.v27i0.73634.
Tucci, C.E.M. 1998. Hydrological Models. 1st edition. University Publisher UFRGS, Porto Alegre.
U.S. Army Corps of Engineers – USACE. (2016). HEC-RAS: River Analysis System. 2D Modelling User’s Manual. Davis, CA: USACE. Available at https://www.hec.usace.army.mil/software/hec-ras/documentation.aspx. Accessed in September 2021.
Vianna, M.P. & Avelar, W.E.O. 2010. Occurrence of the invasive species Corbicula flumínea (Bivalvia, Corbiculidae) in the Sapucaí River (São Paulo, Brazil). Biotemas, 23(3): 56-66. https://doi.org/10.5007/2175-7925.2010v23n3p59. DOI: https://doi.org/10.5007/2175-7925.2010v23n3p59
Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.F.; Kirschbaum, D.; Kunz, M. & Winsemius H.C. 2020. Review article: Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20(4): 1069-1096. https://doi.org/10.5194/nhess-20-1069-2020. DOI: https://doi.org/10.5194/nhess-20-1069-2020
Yu, C.W.; Hodges, B.R. & Liu, F. 2021. Automated Detection of Instability-Inducing Channel Geometry Transitions in Saint-Venant Simulation of Large-Scale River Networks. Water, 13(16): 1-27. https://doi.org/10.3390/w13162236. DOI: https://doi.org/10.3390/w13162236
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.