Aplicação do Índice de Fragilidade em um intervalo de rocha geradora de lutito do Jurássico, Estudo de caso: Poço Poseidon 2, Bacia Browse, Austrália
DOI:
https://doi.org/10.22456/1807-9806.137321Palavras-chave:
Gás de folhelhos, registros de poço, carbono orgânico total, geomecânica de poços, mineralogia, regressão linear múltiplaResumo
Na exploração de petróleo/gás de lutito o uso do Índice de Fragilidade para identificar pontos-ideais tornou-se padrão. Esta prática pode ser imprecisa feita inapropriadamente. Este trabalho usou estatísticas básicas e gráficos de dispersão para identificar tendências e desempenho de quatro índices de fragilidade. Nos resultados, os índices pareceram similares nos registros e com valores mais altos em litologias de arenitos. A sensibilidade para parâmetros como o Carbono Orgânico Total, Porosidade, Mineralogia e fluido, variou entre os índices. A relação da fragilidade com as propriedades da rocha está principalmente ligada às características de desenho dos índices. A seleção do índice de fragilidade deveria ser feita considerando que algumas propriedades podem afetar de maneira positiva ou negativa. Desde este trabalho, a aplicação do índice de fragilidade é entendida em uma forma mais prática com respeito às considerações básicas a incluir na avaliação de Plays de lutitos.
Downloads
Referências
Altindag, R. 2003. Correlation of specific energy with rock brittleness concepts on rock Cutting. Journal of the Southern African Institute of Mining and Metallurgy, 103(3): 163-172. https://hdl.handle.net/10520/AJA0038223X_2948
Bonamente, M. 2017. Statistics and Analysis of Scientific Data. 2nd ed. New York, Springer, 318p. DOI: https://doi.org/10.1007/978-1-4939-6572-4
Chang, C., Zoback, M.D. & Khaksar, A. 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng.,51(3): 223-237. https://doi.org/10.1016/j.petrol.2006.01.003 DOI: https://doi.org/10.1016/j.petrol.2006.01.003
Chen, J.; Zhang, G.; Chen, H. & Yin, X. 2014. The construction of shale rock physics effective model and prediction of rock brittleness. In: Annual SEG Meeting, 84, Oct. 2014, Denver, Colorado, USA. SEG Tech. Program Expand. Abstr. 2014, Denver, p. 2861-2865. https://doi.org/10.1190/segam2014-0716.1 DOI: https://doi.org/10.1190/segam2014-0716.1
ConocoPhillips. 2010. Poseidon 1. WCR (basic): Well Completion Report. National Offshore Petroleum Information Management System (NOPIMS), ConocoPhillips, Volume 1: Basic Data, 1133p. (Released Report). Available in: < https://dnxxuwuw8tglo.cloudfront.net/Wells/P00685602.zip >. Accessed in: Dec. 2021.
ConocoPhillips. 2011a. Poseidon 2. WCR (Basic): Well Completion Report. National Offshore Petroleum Information Management System (NOPIMS), ConocoPhillips, Volume 1: Basic Data,1446p. (Released Report). Available in: < https://dnxxuwuw 8tglo.cloudfront.net/Wells/P00688589.zip >. Accessed in: Dec. 2021.
ConocoPhillips. 2011b. Poseidon 2. WCR (interpreted): Well Completion Report. National Offshore Petroleum Information Management System (NOPIMS), ConocoPhillips, Volume 2: Interpretative Data, 990p. (Released Report). Available in: < https://dnxxuwuw8tglo.cloudfront.net/Wells/P00707041.zip >. Accesed in: Dec. 2021.
ConocoPhillips. 2012. WA-315-P & WA-398-P Browse Basin Western Australia: 2009 Poseidon 3D Marine Surface Seismic Survey Interpretation Report. National Offshore Petroleum Information Management System (NOPIMS), ConocoPhillips, 43p. (Released Report). Available in: < https://dnxxuwuw8tglo.cloudfront.net/Surveys/P00696639.zip >. Accessed in: Dec. 2021.
Fjær, E.; Horsrud, P.; Risnes, R.; Holt, R. & Raaen, A. 2008. Petroleum Related Rock Mechanics. In: Developments in Petroleum Science, v. 53, 2nd ed. Elsevier Science, 491p.
Feder, J. 2020. Unconventionals at a Crossroads: Where Do We Go from Here? Available in: < https://jpt.spe.org/unconventionals-crossroads-where-do-we-go-here >. Accessed in: Aug. 2021.
Geoactive Limited. 2022. Aberdeen, United Kingdom, 2021 release. Available in: < https://www.geoactive.com/resources/ic-2021-latest-release >. Accessed in: Oct. 2022.
Geoscience Australia. 2021a. Regional Geology of the Browse Basin. Available in: < https://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/acreagerelease/browse>. Accessed in: Nov. 2021.
Geoscience Australia. 2021b. Copyright and Disclaimer Notice. Available in: < https://www.ga.gov.au/copyright >. Accessed in: Nov. 2021.
Huang, R.; Wang, Y.; Cheng, S.; Liu, S. & Cheng, L. 2015. Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan Basin. Nat. Gas Ind. B, 2(2-3): 155-161. https://doi.org/10.1016/j.ngib.2015.07.004 DOI: https://doi.org/10.1016/j.ngib.2015.07.004
Ibad, S.M. & E. Padmanabhan, E. 2022. Inorganic geochemical, mineralogical and methane sorption capacities of Paleozoic shale formations from Western Peninsular Malaysia: Implication of shale gas potential. Appl. Geochemistry, 140:105269:1-20. https://doi.org/10.1016/j.apgeochem.2022.105269 DOI: https://doi.org/10.1016/j.apgeochem.2022.105269
Jin, X.; Shah; S.N.; Roegiers, J-C. & Zhang, B. 2015. An Integrated Petrophysics and Geomechanics Approach for Fracability Evaluation in Shale Reservoirs. SPE J., 20(03): 518–526. https://doi.org/10.2118/168589-PA DOI: https://doi.org/10.2118/168589-PA
Occam Technology Pty. Ltd. 2022. Poseidon 2: Well Data. Adelaide, Occam Technology Pty. Ltd. (Private Communication).
Pan, X.P.; Zhang, G.Z. & Chen, J. 2020. The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir. Science, 17: 658-670. doi: https://doi.org/10.1007/s12182-020-00432-2 DOI: https://doi.org/10.1007/s12182-020-00432-2
Palu, T.; Hall, L.; Edwards, D.; Grosjean, E.; Rollet, N.; Boreham, C.; Buckler, T.; Higgings, K.; Nguyen, D. & Khider, K. 2017. Source Rocks and Hydrocarbon Fluids of the Browse Basin. In: AAPG/SEG 2017 International Conference and Exhibition, Oct. 15-18, 2017, London, England. Search and Discovery Article, 11028, 9p. https://www.searchanddiscovery.com/pdfz/documents/2017/11028palu/ndx_palu.pdf.html
Peña, K.L. 2022a. Las amenazas del fracking & el manejo de impactos al agua y suelo, por fallamiento y sismicidad inducida. In: 4a Jornada Ambiental GEAmbiental, Apr. 22 – 23, 2022, Bucaramanga, Colombia. Presentation 10.
Peña, K.L. 2022b. Application of the Fracability Index Using Well-logging Data to Evaluate the Sequences BB15 to BB5 in the Browse Basin Northwest Shelf Australia. Yogyakarta, 219p. Masters Thesis, Postgraduate Program of Geological Engineering, Geological Engineering Department, Universitas Gadjah Mada.
Peña Cerón, K.L.; Surjono, S.S. & Indrawan, I.G.B. 2023. Estimation of Rock Mechanical Parameters Using Well Log Data in the Poseidon 1 Well, Lower Cretaceous, Browse Basin, Northwest Shelf, Australia. In: Geoscience and Environmental Management, 3: International Conference of Science and Technology – Universitas Gadjah Mada, 8, Sep. 2022. IOP Conference Series: Earth and Environmental Science, Bristol, v. 1233, paper id. 012026, 13p. DOI 10.1088/1755-1315/1233/1/012026 DOI: https://doi.org/10.1088/1755-1315/1233/1/012026
Raymond, O.L.; Totterdell, J.M.; Woods, M.A. & Stewart, A.J. 2018. Australian Geological Provinces 2018.01 edition. Canberra, Geoscience Australia, scale 1:1,000,000. https://doi.org/10.26186/116823
Ribeiro, P.; Melo, M. & Nelson, P. 2016. Correlation Between Uniaxial Compressive Strength and Brazilian Tensile Strength Using Different Rock Types. In: ISRM VII Brazilian Symposium on Rock Mechanics - SBMR 2016, Belo Horizonte, Minas Gerais, Brazil, Oct. 19–26, 2016. ISRM VII Bra. Symp. on Rock Mech, Belo Horizonte, paper number ISRM-SBMR-2016-01. Available in: < https://onepetro.org/ISRMSBMR/proceedings-abstract/SBMR16/All-SBMR16/ISRM-SBMR-2016-01/169835 >. Accessed in: Dec. 2021.
R Foundation for Statistical Computing. 2022. R. Vienna, Austria, v. 4.2.0. Available in: < https://www.R-project.org/ >. Accessed in: May. 2022.
Rickman, R.; Mullen, M.; Petre, E.; Grieser, B. & Kundert, D. 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale. In: SPE Annual Technical Conference and Exhibition, Sep. 2008, Denver, Colorado, USA. SPE Annu. Tech. Conf. Exhib., Denver, Paper Number: SPE-115258-MS. https://doi.org/10.2118/115258-MS DOI: https://doi.org/10.2118/115258-MS
Rollet, N.; Edwards, D.; Grosjean, E.; Palau, T.; Hall, L.; Totterdell, J.; Boreham, C. & Murray, A. 2018. Regional Jurassic sediment depositional architecture, Browse Basin: Implications for petroleum systems. In: Australasian Exploration Geoscience Conference, 1st, 2018, Sydney, Australia. ASEG Extended Abstracts, 2018 (1): 1-8. https://doi.org/10.1071/ASEG2018abM1_3B DOI: https://doi.org/10.1071/ASEG2018abM1_3B
Wright, B. 2012. Unconventionals' Role as a Bridge to the Future. Available in: < https://jpt.spe.org/unconventionals-role-as-a-bridge-to-the-future >. Accessed in: Oct. 2022.
Zhang, D.; Ranjith, P. & Perera, M. 2016. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. J. Pet. Sci. Eng., 143: 158-170. https://doi.org/10.1016/j.petrol.2016.02.011 DOI: https://doi.org/10.1016/j.petrol.2016.02.011
Zoback, M.D. & Kohli, A. 2019. Unconventional Resources Geomechanics: Shale Gas, Tight gas, and induced seismicity. Cambridge, Cambridge University Press, 492p. https://doi.org/10.1017/9781316091869 DOI: https://doi.org/10.1017/9781316091869
Zou, C. 2017. Unconventional Petroleum Geology. 2nd ed. Elsevier, 500p. DOI: https://doi.org/10.1016/B978-0-12-812234-1.00002-9
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.