Revisão sistemática dos estudos de permeabilidade em praias usando técnicas computacionais

Autores

  • Elaine Baroni de Oliveira Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Programa de Pós-Graduação em Geociências https://orcid.org/0000-0001-8902-8867
  • Eduardo Guimarães Barboza Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Centro de Estudos de Geologia Costeira e Oceânica https://orcid.org/0000-0003-2107-6904

DOI:

https://doi.org/10.22456/1807-9806.136152

Palavras-chave:

Condutividade hidráulica, fluxo, morfologia costeira, VOSviewer, Tree of Science

Resumo

A permeabilidade é um parâmetro importante na determinação das equações de fluxo e no transporte de sedimentos praial. Este estudo avaliou os estudos de permeabilidade e condutividade hidráulica em praias, analisando o desempenho e a estrutura de pesquisa, através de uma revisão sistemática da literatura. A base de dados foi composta por 51 artigos retirados da plataforma Web of Science. A análise dos dados foi compilada usando as ferramentas Tree of Science, VOSviewer e Altrimetric Bookmarklet. Os resultados mostraram que a principal fonte de divulgação dos artigos foi o “Journal of Coastal Research” e que os países com a maior parte das publicações e colaborações foram os EUA e a Inglaterra. As redes de conexão mostram uma baixa colaboração entre os diferentes subgrupos de pesquisa, porém uma boa ligação entre os autores de um mesmo grupo. Gear Masselink foi o autor mais influente no tema. Os dados da plataforma Altimetric mostram que o tema não recebe muita atenção social. Os resultados dessa revisão posicionaram a permeabilidade na pesquisa costeira e apontaram lacunas, principalmente a falta de medições da permeabilidade in situ, que ainda precisam ser investigadas nos diferentes ramos de pesquisa.

Downloads

Não há dados estatísticos.

Biografia do Autor

Elaine Baroni de Oliveira, Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Programa de Pós-Graduação em Geociências

Instituto de Geociências

Referências

Afrifa, S.; Zhang, T.; Appiahene, P.; Varadarajan, V. 2022. Mathematical and machine learning models for groundwater level changes: a systematic review and bibliographic analysis. Future Internet, 14(9): 259. https://doi.org/10.3390/fi14090259 DOI: https://doi.org/10.3390/fi14090259

Ankrah, J.; Monteiro, A.; Madureira, H. 2022. Bibliometric analysis of data sources and tools for shoreline change analysis and detection. Sustainability, 14(9): 4895. https://doi.org/10.3390/su14094895 DOI: https://doi.org/10.3390/su14094895

Aragonés, L.; López, I.; Villacampa, Y.; Serra, J. C.; Saval, J. M. 2015. New methodology for the classification of gravel beaches: adjusted on Alicante (Spain). Journal of Coastal Research, 31(4): 1023-1034. https://doi.org/10.2112/JCOASTRES-D-14-00140.1 DOI: https://doi.org/10.2112/JCOASTRES-D-14-00140.1

Austin, M. J. & Masselink, G. 2006. Infiltration and Exfiltration on a Steep Gravel Beach: Implications for Sediment Transport. Coastal Dynamics, 26(20): 2503-2519. https://doi.org/10.1061/40855(214)102 DOI: https://doi.org/10.1016/j.csr.2006.07.031

Bagnold, R.A. 1940. Beach formation by waves: some model experiments in a wave tank (includes photographs). Journal of the Institution of Civil Engineers, 15(1): 27-52. DOI: https://doi.org/10.1680/ijoti.1940.14279

Baird, A.J.; & Horn, D.P. 1996. Monitoring and modelling groundwater behaviour in sandy beaches. Journal of Coastal Research, 12(3): 630-640. https://www.jstor.org/stable/4298511

Basumatary, B.; Verma, A.K.; Kushwaha, S.; Verma, M.K. 2023. Global research trends and performance measurement on biofloc technology (BFT): a systematic review based on computational techniques. Aquaculture International, (2023): 1-26. https://doi.org/10.1007/s10499-023-01162-z DOI: https://doi.org/10.1007/s10499-023-01162-z

Bennett, R.H.; Hulbert, M.H.; Curry, C.; Johnson, H.P.; Hutnak, M.; Curry, K.J. 2002. In situ permeabilities of selected coastal marine sediments. IEEE journal of oceanic engineering, 27(3): 571-580. https://doi.org/10.1109/JOE.2002.1040939 DOI: https://doi.org/10.1109/JOE.2002.1040939

Bobo, A.M.; Khoury, N.; Li, H.; Boufadel, M.C. 2012. Groundwater flow in a tidally influenced gravel beach in Prince William Sound, Alaska. Journal of Hydrologic Engineering, 17(4): 478-494. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000454 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000454

Bordons, M. & Gómez, I. 2000. Collaboration Networks in Science, in: Cronin, B. & Atkins, H.B. (Eds.). The web of knowledge: A festschrift in honor of Eugene Garfield. Information Today, New Jersey. 1st ed., p. 197-214.

Briganti, R.; Torres-Freyermuth, A.; Baldock, T.E.; Brocchini, M.; Dodd, N.; Hsu, T.J.; Jiang, Z.; Kim, Y.; Pintado-Patiño, J.C.; Postacchini, M. 2016. Advances in numerical modelling of swash zone dynamics. Coastal Engineering, 115: 26-41. https://doi.org/10.1016/j.coastaleng.2016.05.001 DOI: https://doi.org/10.1016/j.coastaleng.2016.05.001

Broadus, R.N. 1987. Toward a definition of “bibliometrics”. Scientometrics, 12, p. 373-379. https://doi.org/.1007/BF02016680 DOI: https://doi.org/10.1007/BF02016680

Bujan, N.; Cox, R.; Masselink, G. 2019. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Marine Geology, 417: 106012. https:// doi.org/10.1016/j.margeo.2019.106012 DOI: https://doi.org/10.1016/j.margeo.2019.106012

Burnett, W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.S.; Taniguchi, M. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53 DOI: https://doi.org/10.1023/B:BIOG.0000006066.21240.53

Butt, T. & Russell, P. 2000. Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: a review. Journal of Coastal Research, 16(2): 255-268. https://www.jstor.org/stable/4300034

Butt, T.; Russell, P.; Turner, I. 2001. The influence of swash infiltration–exfiltration on beach face sediment transport: onshore or offshore? Coastal Engineering, 2(1): 35-52. https://doi.org/10.1016/S0378-3839(00)00046-6 DOI: https://doi.org/10.1016/S0378-3839(00)00046-6

Cammelli, C.; Jackson, N.L.; Nordstrom, K.F.; Pranzini, E. 2006. Assessment of a gravel nourishment project fronting a seawall at Marina di Pisa, Italy. Journal of Coastal Research, SI39: 770-775. https://www.jstor.org/stable/25741681

Carmo, J.S.A. 2013. Experiência de recuperação de um sistema dunar e proposta de instrumentos complementares de proteção, atração e valorização ambiental. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 13(3): 317-328. https://doi.org/10.5894/rgci394 DOI: https://doi.org/10.5894/rgci394

Carson, H.S.; Colbert, S.L.; Kaylor, M.J.; McDermid, K. J. 2011. Small plastic debris changes water movement and heat transfer through beach sediments. Marine Pollution Bulletin, 62(8): 1708-1713. https://doi.org/10.1016/j.marpolbul.2011.05.032 DOI: https://doi.org/10.1016/j.marpolbul.2011.05.032

Carter, R.W.G. & Orford, J.D. 1984. Coarse clastic barrier beaches: a discussion of the distinctive dynamic and morphosedimentary characteristics. Developments in Sedimentology, 39: 377-389. https://doi.org/1016/S0070-4571(08)70155-9. DOI: https://doi.org/10.1016/S0070-4571(08)70155-9

Chapuis, R.P. 2004. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian geotechnical journal, 41(5): 787-795. https://doi.org/10.1139/t04-022 DOI: https://doi.org/10.1139/t04-022

Chapuis, R.P. 2012. Predicting the saturated hydraulic conductivity of soils: a review. Bulletin of engineering geology and the environment, 71: 401-434. https://doi.org/10.1007/s10064-012-0418-7 DOI: https://doi.org/10.1007/s10064-012-0418-7

Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R. 2014. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique, 64(12): 1010-1013. https://doi.org/10.1680/geot.14.T.025 DOI: https://doi.org/10.1680/geot.14.T.025

Conley, D.C. & Inman, D.L. 1994. Ventilated oscillatory boundary layers. Journal of Fluid Mechanics, 273: 261-284. https://doi.org/10.1017/S002211209400193X DOI: https://doi.org/10.1017/S002211209400193X

Costi, J.; & Calliari, L.J. 2008. Estimativa do volume sedimentar potencialmente contaminado em casos de derrame de óleo em condições de verão para praias arenosas do Rio Grande do Sul. In RIO OIL & GAS EXPO AND CONFERENCE, 2008, Rio de Janeiro. Anais… Rio de Janeiro (8 p).

Dai, H. & Kikkert, G. 2013. Characteristics Of The Entrained Air Bubble Cloud In The Swash-Zone. In: World Congress of the International-Association-for-Hydro-Environment-Engineering-and-Research (IAHR), 35, 2013, Chengdu, China. Anais… Chengdu. Disponível em https://hdl.handle.net/1783.1/58143. Acesso em: 09 out. 2023.

Duncan Jr, J.R. 1964. The effects of water table and tide cycle on swash-backwash sediment distribution and beach profile development. Marine Geology, 2(3): 186-197. https://doi.org/10.1016/0025-3227(64)90039-8 DOI: https://doi.org/10.1016/0025-3227(64)90039-8

Elfrink, B. & Baldock, T. 2002. Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal Engineering, 45(3-4): 149-167. https://doi.org/10.1016/S0378-3839(02)00032-7 DOI: https://doi.org/10.1016/S0378-3839(02)00032-7

Emami, A.; Bryan, K.R.; Lange, W. P. D. 2019. Spatial patterns in groundwater seepage and surf zone morphology: Muriwai Beach, New Zealand. Journal of Coastal Research, 35(1): 186-195. https://doi.org/10.2112/JCOASTRES-D-17-00180.1 DOI: https://doi.org/10.2112/JCOASTRES-D-17-00180.1

Fagbule, O.F. 2018. Use of social media to enhance the impact of published papers. Annals of Ibadan postgraduate medicine, 16(1): 5-6.

Fernandes, K.R. & da Silva, L.F. 2018. Inovação Tecnológica e o Alcance de Vantagem Competitiva Sustentável: Um Mapeamento da Literatura. In: EnANPAD, 42, 2018, Curitiba. Anais… Curitiba, ANPAD, p.1-16.

Folk, R.L. & Ward, W.C. 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1): 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Forster, S.; Bobertz, B.;Bohling, B. 2003. Permeability of sands in the coastal areas of the southern Baltic Sea: mapping a grain-size related sediment property. Aquatic Geochemistry, 9: 171-190. https://doi.org/10.1023/B:AQUA.0000022953.52275.8b DOI: https://doi.org/10.1023/B:AQUA.0000022953.52275.8b

Franceschet, M. & Costantini, A. 2010. The effect of scholar collaboration on impact and quality of academic papers. Journal of informetrics, 4(4): 540-553. https://doi.org/10.1016/j.joi.2010.06.003 DOI: https://doi.org/10.1016/j.joi.2010.06.003

Garcia, D.C.F.; Gattaz, C.C.; Gattaz, N.C. 2019. A Relevância do Título, do Resumo e de Palavras-chave para a Escrita de Artigos Científicos. Revista de Administração Contemporânea, 23: 1-9. https://doi.org/10.1590/1982-7849rac2019190178 DOI: https://doi.org/10.1590/1982-7849rac2019190178

Gedik, N.; İrtem, E.; Kabdasli, S. 2005. Laboratory investigation on tsunami run-up. Ocean Engineering, 32(5-6): 513-528. https://doi.org/10.1016/j.oceaneng.2004.10.013 DOI: https://doi.org/10.1016/j.oceaneng.2004.10.013

Geng, X.; Heiss, J.W.; Michael, H.A.; Boufadel, M.C.; Lee, K. 2020. Groundwater flow and moisture dynamics in the swash zone: Effects of heterogeneous hydraulic conductivity and capillarity. Water Resources Research, 56(11): e2020WR028401. https://doi.org/10.1029/2020WR028401 DOI: https://doi.org/10.1029/2020WR028401

Grant, U.S. 1948. Influence of the water table on beach aggradation and degradation. Journal of Marine Research, 7(3): 655-660. https://elischolar.library.yale.edu/journal_of_marine_research/694

Guest, T.B. & Hay, A.E. 2017. Vertical structure of pore pressure under surface gravity waves on a steep, megatidal, mixed sand‐gravel‐cobble beach. Journal of Geophysical Research: Oceans, 122(1): 153-170. https://doi.org/10.1002/2016JC012257 DOI: https://doi.org/10.1002/2016JC012257

Guo, Q.; Li, H.; Boufadel, M.C.; Sharifi, Y. 2010. Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil. Journal of Geophysical Research: Oceans, 115(C12): C12077. https://doi.org/10.1029/2010JC006169 DOI: https://doi.org/10.1029/2010JC006169

Gyanendra, Y.; Yumnam, G.; Alam, W.; Singh, C.I. 2022. A bibliometric analysis and assessment of scientific studies trend on groundwater research in India during 1989–2020. Arabian Journal of Geosciences, 15(16): 1417. https://doi.org/10.1007/s12517-022-10707-0 DOI: https://doi.org/10.1007/s12517-022-10707-0

Hazen, A. 1911 Discussion of “Dams on Sand Foundations” by A. C. Koenig. Transactions of the American Society of Civil Engineers, 73, p. 199-203. DOI: https://doi.org/10.1061/TACEAT.0002311

Horn, D. & Li, L. 2006. Measurement and modelling of gravel beach groundwater response to wave run-up: effects on beach profile changes. Journal of Coastal Research, 22(5), p. 1241-1249. https://doi.org/10.2112/06A-0006.1 DOI: https://doi.org/10.2112/06A-0006.1

Horn, D.P. & Walton, S.M. 2007. Spatial and temporal variations of sediment size on a mixed sand and gravel beach. Sedimentary Geology, 202(3): 509-528. https://doi.org/10.1016/j.sedgeo.2007.03.023 DOI: https://doi.org/10.1016/j.sedgeo.2007.03.023

Horn, D.P. 2002. Beach groundwater dynamics. Geomorphology, 48(1-3): 121-146. https://doi.org/10.1016/S0169-555X(02)00178-2 DOI: https://doi.org/10.1016/S0169-555X(02)00178-2

Horn, D.P. 2006. Measurements and modelling of beach groundwater flow in the swash-zone: a review. Continental Shelf Research, 26(5): 622-652. https://doi.org/10.1016/j.csr.2006.02.001 DOI: https://doi.org/10.1016/j.csr.2006.02.001

Hughes, M.G.; Masselink, G.; Brander, R.W. 1997. Flow velocity and sediment transport in the swash zone of a steep beach. Marine Geology, 138(1-2): 91-103. https://doi.org/0.1016/S0025-3227(97)00014-5 DOI: https://doi.org/10.1016/S0025-3227(97)00014-5

Jennings, R. & Shulmeister, J. 2002. A field based classification scheme for gravel beaches. Marine Geology, 186(3-4): 211-228. https://doi.org/10.1016/S0025-3227(02)00314-6 DOI: https://doi.org/10.1016/S0025-3227(02)00314-6

Kikkert, G.; O'Donoghue, T.; Pokrajac, D.; Steenhauer, K. 2009. Effects of beach roughness and permeability on swash hydrodynamics. Coastal Engineering, 5: 798-809. https://doi.org/10.1142/9789814277426_0067 DOI: https://doi.org/10.1142/9789814277426_0067

Krumbein, W.C. & Monk, G.D. 1943. Permeability as a function of the size parameters of unconsolidated sand. Transactions of the AIME, 151(01): 153-163. https://doi.org/10.2118/943153-G DOI: https://doi.org/10.2118/943153-G

Kulkarni, C.D.; Levoy, F.; Monfort, O.; Miles, J. 2004. Morphological variations of a mixed sediment beachface (Teignmouth, UK). Continental Shelf Research, 24(11): 1203-1218. https://doi.org/10.1016/j.csr.2004.03.005 DOI: https://doi.org/10.1016/j.csr.2004.03.005

Laudier, N.A.; Thornton, E.B.; MacMahan, J. 2011. Measured and modeled wave overtopping on a natural beach. Coastal Engineering, 58(9): 815-825. https://doi.org/10.1016/j.coastaleng.2011.04.005 DOI: https://doi.org/10.1016/j.coastaleng.2011.04.005

Lee, B.J.; Lee, J.H.; Yoon, H.; Lee, E. 2015. Hydraulic experiments for determination of in-situ hydraulic conductivity of submerged sediments. Scientific reports, 5(1): 7917. https://doi.org/10.1038/srep07917 DOI: https://doi.org/10.1038/srep07917

Li, H., Sun, P.; Chen, S.; Xia, Y.; Liu, S. 2010. A falling‐head method for measuring intertidal sediment hydraulic conductivity. Groundwater, 48(2): 206-211. https://doi.org/10.1111/j.1745-6584.2009.00638.x DOI: https://doi.org/10.1111/j.1745-6584.2009.00638.x

Longuet‐Higgins, M.S. & Smith, N.D. 1983. Measurement of breaking waves by a surface jump meter. Journal of Geophysical Research: Oceans, 88(C14): 9823-9831. https://doi.org/10.1029/JC088iC14p09823 DOI: https://doi.org/10.1029/JC088iC14p09823

Ma, Q. & Zhang, Y. 2020. Global research trends and hotspots on submarine groundwater discharge (SGD): A bibliometric analysis. International Journal of Environmental Research and Public Health, 17(3): 830. https://doi.org/10.3390/ijerph17030830 DOI: https://doi.org/10.3390/ijerph17030830

Martínez, M.L.; Silva, R.; López-Portillo, J.; Feagin, R.A.; Martínez, E. 2020. Coastal ecosystems as an ecological membrane. Journal of Coastal Research, 95(SI): 97-101. https://doi.org/10.2112/SI95-019.1 DOI: https://doi.org/10.2112/SI95-019.1

Mason, T. & Coates, T.T. 2001. Sediment transport processes on mixed beaches: a review for shoreline management. Journal of Coastal Research, 17(3): 645-657. https://www.jstor.org/stable/4300216

Masselink, G. & Li, L. 2001. The role of swash infiltration in determining the beachface gradient: a numerical study. Marine Geology, 176(1-4): 139-156. https://doi.org/10.1016/S0025-3227(01)00161-X DOI: https://doi.org/10.1016/S0025-3227(01)00161-X

Masselink, G. & Puleo, J.A. 2006. Swash-zone morphodynamics. Continental Shelf Research, 26(5): 661-680. https://doi.org/10.1016/j.csr.2006.01.015 DOI: https://doi.org/10.1016/j.csr.2006.01.015

Masselink, G. & Short, A.D. 1993. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of Coastal Research, 9(3): 785-800. https://www.jstor.org/stable/4298129

Masselink, G. & Turner, I.L. 2012. Large-scale laboratory investigation into the effect of varying back-barrier lagoon water levels on gravel beach morphology and swash zone sediment transport. Coastal Engineering, 63: 23-38. https://doi.org/10.1016/j.coastaleng.2011.12.007 DOI: https://doi.org/10.1016/j.coastaleng.2011.12.007

McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P. 2015. Modelling the morphodynamics of gravel beaches during storms with XBeach-G. Coastal Engineering, 103: 52-66. https://doi.org/10.1016/j.coastaleng.2015.06.002 DOI: https://doi.org/10.1016/j.coastaleng.2015.06.002

McFarland, S.; Whitcombe, L.; Collins, M. 1994. Recent shingle beach renourishment schemes in the UK: some preliminary observations. Ocean & coastal management, 25(2): 143-149. https://doi.org/10.1016/0964-5691(94)90044-2 DOI: https://doi.org/10.1016/0964-5691(94)90044-2

McLachlan, A. & Turner, I. 1994. The interstitial environment of sandy beaches. Marine Ecology, 15(3‐4): 177-212. https://doi.org/10.1111/j.1439-0485.1994.tb00053.x DOI: https://doi.org/10.1111/j.1439-0485.1994.tb00053.x

Missimer, T.M.; Goso, C.; Maliva, R.G.; Hegy, M.C. 2019. Immature beach/dune sands along a passive continental margin: Composition, grain size and hydraulic properties of coastal sands, Parque del Plata and Las Vegas, Uruguay. The depositional record, 5(2): 322-347. https://doi.org/10.1002/dep2.68 DOI: https://doi.org/10.1002/dep2.68

Nachite, D.; Domínguez, N.D.E.; El M'rini, A.; Anfuso, G. 2020. Environmental Sensitivity Index maps in a high maritime transit area: The Moroccan coast of the Gibraltar Strait study case. Journal of African Earth Sciences, 163: 103750. https://doi.org/10.1016/j.jafrearsci.2020.103750 DOI: https://doi.org/10.1016/j.jafrearsci.2020.103750

Newman, M.E. 2004. Coauthorship networks and patterns of scientific collaboration. Proceedings of the national academy of sciences, 101(suppl_1): 5200-5205. https://doi.org/10.1073/pnas.0307545100 DOI: https://doi.org/10.1073/pnas.0307545100

Nielsen, P. 1990. Tidal dynamics of the water table in beaches. Water resources research, 26(9): 2127-2134. https://doi.org/10.1029/WR026i009p02127 DOI: https://doi.org/10.1029/WR026i009p02127

Nixon, Z.; Michel, J.; Hayes, M.O.; Irvine, G.V.; Short, J. 2013. Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill. Journal of Coastal Research, (69): 115-127. https://doi.org/10.2112/SI_69_9 DOI: https://doi.org/10.2112/SI_69_9

Oliveira, E.B. & Nicolodi, J.L. 2017. Oil permeability variations on lagoon sand beaches in the Patos-Guaíba system in Rio Grande do Sul, Brazil. Marine Pollution Bulletin, 115(1-2): 154-163. https://doi.org/10.1016/j.marpolbul.2016.12.020 DOI: https://doi.org/10.1016/j.marpolbul.2016.12.020

Oliveira, O.J.; da Silva, F.F.; Juliani, F.; Barbosa, L.C.F.M.; Nunhes, T.V. 2019. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. Scientometrics recent advances. IntechOpen. https://doi.org/10.5772/intechopen.85856 DOI: https://doi.org/10.5772/intechopen.85856

Owens, E.H.; Sergy, G.A.; Guénette, C.C.; Prince, R.C.; Lee, K. 2003. The reduction of stranded oil by in situ shoreline treatment options. Spill Science & Technology Bulletin, 8(3): 257-272. https://doi.org/10.1016/S1353-2561(03)00041-0 DOI: https://doi.org/10.1016/S1353-2561(03)00041-0

Packwood, A.R. 1983. The influence of beach porosity on wave uprush and backwash. Coastal Engineering, 7(1): 29-40. https://doi.org/10.1016/0378-3839(83)90025-X DOI: https://doi.org/10.1016/0378-3839(83)90025-X

Patrus, R., & Silva, V.T.O. 2019. A organização de uma revisão de literatura por meio da Tree of Science (Árvore da Ciência): um exemplo sobre a avaliação da pós-graduação. Avaliação: Revista da Avaliação da Educação Superior (Campinas), 24: 68-88. https://doi.org/10.1590/S1414-40772019000100005 DOI: https://doi.org/10.1590/s1414-40772019000100005

Pedrozo-Acuna, A.; Simmonds, D.J.; Otta, A.K.; Chadwick, A.J. 2006. On the cross-shore profile change of gravel beaches. Coastal Engineering, 53(4): 335-347. https://doi.org/10.1016/j.coastaleng.2005.10.019 DOI: https://doi.org/10.1016/j.coastaleng.2005.10.019

Pereira, P.S. & Calliari, L.J. 2005. Permeabilidade das praias oceânicas do Rio Grande do Sul (RS) em relação a eventuais derrames de óleo. In: CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO E GÁS, 3, 2005, Salvador. Anais... Salvador.

Postacchini, M.; Russo, A.; Carniel, S.; Brocchini, M. 2016. Assessing the hydro-morphodynamic response of a beach protected by detached, impermeable, submerged breakwaters: a numerical approach. Journal of Coastal Research, 32(3): 590-602. https://doi.org/10.2112/JCOASTRES-D-15-00057.1 DOI: https://doi.org/10.2112/JCOASTRES-D-15-00057.1

Quick, M.C. 1991. Onshore-offshore sediment transport on beaches. Coastal Engineering, 15(4): 313-332. https://doi.org/10.1016/0378-3839(91)90014-8 DOI: https://doi.org/10.1016/0378-3839(91)90014-8

Reis, A.H. & Gama, C. 2010. Use of sand beds of variable permeability in beach profile engineering. AIP Conference Proceedings, 1254(1): 231-235. https://doi.org/10.1063/1.3453816 DOI: https://doi.org/10.1063/1.3453816

Robinson, C.E.; Xin, P.; Santos, I.R.; Charette, M.A.; Li, L.; Barry, D.A. 2018. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean. Advances in Water Resources, 115: 315-331. https://doi.org/10.1016/j.advwatres.2017.10.041 DOI: https://doi.org/10.1016/j.advwatres.2017.10.041

Robledo, S.; Osorio, G. &; López, C. 2014. Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2): 6-16. https://doi.org/10.14483/2322939X.9664

Rosas, J.; Lopez, O.; Missimer, T.M.; Coulibaly, K.M.; Dehwah, A.H.; Sesler, K.; Lujan, L.R.: Mantilla, D. 2014. Determination of hydraulic conductivity from grain‐size distribution for different depositional environments. Groundwater, 52(3): 399-413. https://doi.org/10.1111/gwat.12078 DOI: https://doi.org/10.1111/gwat.12078

Sarika, C. & Mohamed, H.K. 2023. Online attention to covid-19 research: an altmetrics analysis. Kelpro Bulletin, 27(1): 1-13.

Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of hydrology, 251(3-4): 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 DOI: https://doi.org/10.1016/S0022-1694(01)00466-8

Sekar, S.; Perumal, M.; Roy, P.D.; Ganapathy, M.; Senapathi, V.; Chung, S.Y.; Elzain, H.E.; Duraisamy, M.; Kamaraj, J. 2022. A review on global status of fresh and saline groundwater discharge into the ocean. Environmental Monitoring Assessment, 194: 915. https://doi.org/10.1007/s10661-022-10566-y DOI: https://doi.org/10.1007/s10661-022-10566-y

Shamsi, A.; Lund, B.D.; SeyyedHosseini, S. 2022. Sharing of retracted COVID-19 articles: an altimetric study. Journal of the Medical Library Association, 110(1): 97. https://doi.org/10.5195/jmla.2022.1269 DOI: https://doi.org/10.5195/jmla.2022.1269

She, K.; Horn, D.P.D.P.; Canning, P. 2006. Porosity and hydraulic conductivity of mixed sand-gravel sediment. In: CONFERENCE ON FLOOD AND COASTAL RISK MANAGEMENT, 16, 2006, York. Anais… York, p. 1-16.

She, K.; Trim, L.; Horn, D.; Canning, P. 2007. Effects of Permeability on the Performance of Mixed Sand-Gravel Beaches. Coastal Sediments ’07. https://doi.org/10.1061/40926(239)39 DOI: https://doi.org/10.1061/40926(239)39

Shepherd, R.G. 1989. Correlations of permeability and grain size. Groundwater, 27(5): 633-638. https://doi.org/10.1111/j.1745-6584.1989.tb00476.x DOI: https://doi.org/10.1111/j.1745-6584.1989.tb00476.x

Slomp, C.P. & Van Cappellen, P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1-4): 64-86. https://doi.org/10.1016/j.jhydrol.2004.02.018 DOI: https://doi.org/10.1016/j.jhydrol.2004.02.018

Solorzano, G. & Plevris, V. 2022. Computational intelligence methods in simulation and modeling of structures: A state-of-the-art review using bibliometric maps. Frontiers in Built Environment, 8: 1049616. https://doi.org/10.3389/fbuil.2022.1049616 DOI: https://doi.org/10.3389/fbuil.2022.1049616

Souza, C. R. G. 2009. A erosão costeira e os desafios da gestão costeira no Brasil. Revista de Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management, 9(1), p. 17-37. DOI: https://doi.org/10.5894/rgci147

Sousa, P.H.G.O.; Siegle, E.; Tessler, M.G. 2011. Environmental and Anthropogenic Indicators for Coastal Risk Assessment at Massaguaçú Beach (SP) Brazil. Journal of Coastal Research, SI64: 319-323. http://www.jstor.org/stable/26482185

Sousa, P.H.G.O.; Siegle, E.; Tessler, M.G. 2013. Vulnerability assessment of Massaguaçú Beach (SE Brazil). Ocean & Coastal Management, 77: 24-30. https://doi.org/10.1016/j.ocecoaman.2012.03.003 DOI: https://doi.org/10.1016/j.ocecoaman.2012.03.003

Steenhauer, K.; Pokrajac, D.; O'Donoghue, T.; Kikkert, G. 2009. Water exchange across the beach face for swash on coarse-grained beaches. Coastal Engineering, 5: 832-844. https://doi.org/10.1142/9789814277426_0070 DOI: https://doi.org/10.1142/9789814277426_0070

Tsurudome, C.; Liang, D.; Shimizu, Y.; Khayyer, A.; Gotoh, H. 2020. Incompressible SPH simulation of solitary wave propagation on permeable beaches. Journal of Hydrodynamics, 32: 664-671. https://doi.org/10.1007/s42241-020-0042-0 DOI: https://doi.org/10.1007/s42241-020-0042-0

Turner, I.L. & Masselink, G. 1998. Swash infiltration‐exfiltration and sediment transport. Journal of Geophysical Research: Oceans, 103(C13): 30813-30824. https://doi.org/10.1029/98JC02606 DOI: https://doi.org/10.1029/98JC02606

Turner, I. 1993. Water table outcropping on macro-tidal beaches: a simulation model. Marine geology, 115(3-4): 227-238. https://doi.org/10.1016/0025-3227(93)90052-W DOI: https://doi.org/10.1016/0025-3227(93)90052-W

Turner, I.L. 1995. Modelling the time‐varying extent of groundwater seepage on tidal beaches. Earth Surface Processes and Landforms, 20(9): 833-843. https://doi.org/10.1002/esp.3290200909 DOI: https://doi.org/10.1002/esp.3290200909

Turner, I.L.; Coates, B.P.; Acworth, R.I. 1997. Tides, waves and the super-elevation of groundwater at the coast. Journal of Coastal Research, 13(1): 46-60. https://www.jstor.org/stable/4298589

Van Eck, N. & Waltman, L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2): 523-538. https://doi.org/10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3

Van Eck, N. & Waltman, L. 2023. VOSviewer Manual, version 1.6.19. Centre for Science and Technology Studies, Leiden University. Netherlands. Availabe at: https://www.vosviewer.com/getting-started

Van Genuchten, M.T. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

Van Wellen, E.; Chadwick, A.J.; Mason, T. 2000. A review and assessment of longshore sediment transport equations for coarse-grained beaches. Coastal Engineering, 40(3): 243-275. https://doi.org/10.1016/S0378-3839(00)00031-4 DOI: https://doi.org/10.1016/S0378-3839(00)00031-4

Vandermeulen, J.H. & Singh, J.G. 1994. Arrow oil spill, 1970–90: Persistence of 20-yr weathered bunker C fuel oil. Canadian Journal of Fisheries and Aquatic Sciences, 51(4): 845-855. https://doi.org/10.1139/f94-083 DOI: https://doi.org/10.1139/f94-083

Wang, X.; Li, H.; Yang, J.; Wan, L.; Wang, X.; Jiang, X.; Guo, H. 2014. Measuring in situ vertical hydraulic conductivity in tidal environments. Advances in Water Resources, 70: 118-130. https://doi.org/10.1016/j.advwatres.2014.05.004 DOI: https://doi.org/10.1016/j.advwatres.2014.05.004

Williams, J.; Masselink, G.; Buscombe, D.; Turner, I.; Matias, A.; Ferreira, O.; Bradbury, A.; Metje, N.; Coates, L.; Chapman, D.; Thompson, C.; Albers, T.; Pan, S. 2009. BARDEX (Barrier Dynamics Experiment): taking the beach into the laboratory. Journal of Coastal Research, SI56: 158-162. https://www.jstor.org/stable/25737557

Williams, J.J.; Buscombe, D.; Masselink, G.; Turner, I.L.; Swinkels, C. 2012. Barrier dynamics experiment (BARDEX): Aims, design and procedures. Coastal Engineering, 63: 3-12. https://doi.org/10.1016/j.coastaleng.2011.12.009 DOI: https://doi.org/10.1016/j.coastaleng.2011.12.009

Zelt, J.A. 1991. The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 15(3): 205-246. https://doi.org/10.1016/0378-3839(91)90003-Y DOI: https://doi.org/10.1016/0378-3839(91)90003-Y

Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. 2015. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4): 967-972. https://doi.org/10.1002/asi.23437 DOI: https://doi.org/10.1002/asi.23437

Zuluaga, M.; Robledo, S.; Arbelaez-Echeverri, O.; Osorio-Zuluaga, G.A.; Duque-Méndez, N. 2022. Tree of Science - ToS: A web-based tool for scientific literature recommendation. Search less, research more! Issues in Science and Technology Librarianship, (100). https:// doi.org/10.29173/istl2696 DOI: https://doi.org/10.29173/istl2696

Downloads

Publicado

2024-01-20

Como Citar

Oliveira, E. B. de, & Guimarães Barboza, E. (2024). Revisão sistemática dos estudos de permeabilidade em praias usando técnicas computacionais. Pesquisas Em Geociências, 50(4), e136152. https://doi.org/10.22456/1807-9806.136152