Wind-blown continental dust as a fuel for paleoproductivity along the southwestern Atlantic Ocean during the last glacial period
DOI:
https://doi.org/10.22456/1807-9806.131140Keywords:
Eolian processes, Glaciogenic dust, Loess, Paleoclimate, Marine Geology, PaleoceanographyAbstract
Glaciogenic dust has a strong relationship with global climate and ocean biogeochemical processes especially during glacial periods, being a major source of nutrients, mainly iron, that increase marine productivity. Different studies have attributed higher marine paleoproductivity along the southwestern Atlantic during the last glacial period to fluvial inputs and upwelling, but the possible influence of continental dust on that process is still unknown. This paper presents evidence suggesting that eolian-sourced glaciogenic dust favored higher ocean productivity during the last glacial, recorded in three sediment cores obtained on the lower continental slope off southern Brazil (~29°-30°S, ~47°W) at water depths between 1,514 and 2,091 m. The sampled sediments are silt-dominated terrigenous siliciclastics, but higher proportions of sand-sized biogenic carbonate (mostly foraminifer tests) at intervals corresponding to the stadials MIS 4 and 2 and parts of the interstadial MIS 3 point to intervals of increased productivity, correlated with pulses of higher deflation of dust from southern South America as recorded in the EPICA Dome C ice core in Antarctica. It is proposed that glacial climate-driven increased eolian processes transported iron-bearing dust produced by the expanded Patagonian ice sheet up to the southwestern Atlantic, fueling higher phytoplankton productivity and thus favoring the proliferation of planktonic and benthic foraminifera recorded in the cores. Eventual anthropogenically-driven reduction of tropical-sourced summer rainfall reaching southern South America, driven by equatorial ocean warming and deforestation in the Amazon region, may increase dust deflation and thus affect ocean productivity along the southwestern Atlantic in the future.
Downloads
References
Abreu, J.G.N. & Calliari, L.J. 2005. Paleocanais na plataforma continental interna do Rio Grande do Sul: evidências de uma drenagem fluvial pretérita. Revista Brasileira de Geofísica, 23(2): 123-132. https://doi.org/10.1590/S0102-261X2005000200002 DOI: https://doi.org/10.1590/S0102-261X2005000200002
Albani, S., Mahowald, N.M., Murphy, L.N., Raiswell, R., Moore, J.K., Anderson, R.F., McGee, D., Bradtmiller, L.I., Delmonte, B., Hesse, P.P. & Mayewski, P.A. 2016. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophysical Research Letters, 43: 3944-3954. https://doi.org/10.1002/2016GL067911. DOI: https://doi.org/10.1002/2016GL067911
de Almeida, F.K., de Mello, R.M., Costa, K.B. & Toledo, F.A.L. 2015. The response of deep-water benthic foraminiferal assemblages to changes in paleoproductivity during the Pleistocene (last 769.2 kyr), western South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 201-212. https://doi.org/10.1016/j.palaeo.2015.09.005 DOI: https://doi.org/10.1016/j.palaeo.2015.09.005
Alves, R.A., da Silva, E.P., Lisniowski M.A., Silva L.G. & Harlamov V. 2021. Projeto de Prospecção e Exploração de Depósitos de Fosforitas Marinhas na Plataforma Continental Jurídica Brasileira. CPRM, Rio de Janeiro, 96 p.
Asmus, H.E. & Ponte, F.C. 1973. The Brazilian marginal basins. In: Nairn A.E.M. & Stehli F.G. (eds.), The Ocean Basins and Margins - Volume 1: the South Atlantic. Springer Science+Business Media, New York, pp. 87-133. DOI: https://doi.org/10.1007/978-1-4684-3030-1_3
Barboza, E.G., Dillenburg, S.R., Rosa, M.L.C.C., Caron, F., Lopes, R.P., Watanabe, D.S.Z. & Tomazelli, L.J. 2021a. Sistemas deposicionais e evolução geológica da planície costeira entre La Coronilla e Cabo de Santa Marta (Bacia de Pelotas): uma revisão. In: Jelinek, A.R. & Sommer, C.A. (eds.), Contribuições à Geologia do Rio Grande do Sul e de Santa Catarina. Editora Compasso Lugar Cultura, Porto Alegre, p. 455-468. https://doi.org/10.29327/537860.1-27 DOI: https://doi.org/10.29327/537860.1-27
Barboza, E.G., Dillenburg, S.R., Lopes, R.P., Rosa, M.L.C.C., Caron, F., Abreu, V., Manzolli, R.P., Nunes, J.C.R., Weschenfelder, J. & Tomazelli, L.J. 2021b. Geomorphological and stratigraphic evolution of a fluvial incision in the coastal plain and inner continental shelf in southern Brazil. Marine Geology, 437: 106514. https://doi.org/10.1016/j.margeo.2021.106514 DOI: https://doi.org/10.1016/j.margeo.2021.106514
Barker, S. & Diz, P. 2014. Timing of the descent into the last Ice Age determined by the bipolar seesaw. Paleoceanography, 29: 489-507. https://doi.org/10.1002/2014PA002623 DOI: https://doi.org/10.1002/2014PA002623
Basile, I., Grousset, F.E., Revel, M., Petit, J.R., Biscaye, P.E. & Barkov, N.I. 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters, 146(3-4): 573-589. https://doi.org/10.1016/s0012-821x(96)00255-5 DOI: https://doi.org/10.1016/S0012-821X(96)00255-5
Behling, H., Pillar, V.D. & Bauermann, S.G. 2005. Late Quaternary grassland (campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology, 133 (3-4): 235-248. https://doi.org/10.1016/j.revpalbo.2004.10.004 DOI: https://doi.org/10.1016/j.revpalbo.2004.10.004
Behrenfeld, M.J., O'Malley, R.T.O., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. & Boss, E.S. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444: 752-755. https://doi.org/10.1038/nature05317 DOI: https://doi.org/10.1038/nature05317
Berden, G., Charo, M., Möller, Jr. O.O. & Piola, A.R. 2020. Circulation and hydrography in the western south atlantic shelf and export to the deep adjacent ocean: 30°S to 40°S. Journal of Geophysics Research: Oceans, 125: e2020JC016500. https://doi.org/10.1029/2020JC016500 DOI: https://doi.org/10.1029/2020JC016500
Bottezini, S.R., Diniz, D., de Ávila, A.S.P. & Leonhardt, A. 2022. Continental influence on the fertilization of marine waters during the late quaternary in the south of the Brazilian continental margin. Ocean and Coastal Research, 70: e22021. https://doi.org/10.1590//2675-2824070.21072srb DOI: https://doi.org/10.1590//2675-2824070.21072srb
Brandini, F.P., Nogueira Jr., M., Simião, M., Codina, J.C.U. & Noernberg, M.A. 2014. Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian Bight. Continental Shelf Research, 89: 61-75. https://doi.org/10.1016/j.csr.2013.08.002 DOI: https://doi.org/10.1016/j.csr.2013.08.002
Bruniard, E.D. 1982. La diagonal árida argentina: un límite climático real. Revista Geográfica, 95: 5-20.
Bullard, J.E. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms, 38(1): 71-89. https://doi.org/10.1002/esp.3315 DOI: https://doi.org/10.1002/esp.3315
Butler, L.W. 1970. Shallow structure of the continental margin, southern Brazil and Uruguay. GSA Bulletin, 81: 1079-1096. https://doi.org/10.1130/0016-7606(1970)81[1079:SSOTCM]2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1970)81[1079:SSOTCM]2.0.CO;2
Campos, E.J.D., Lentini, C.A.D., Miller, J.L. & Piola, A.R. 1999. Interannual variability of the sea surface temperature in the South Brazil Bight. Geophysical Research Letters, 26(14): 2061-2064. https://doi.org/10.1029/1999GL900297 DOI: https://doi.org/10.1029/1999GL900297
Campos, E.J.D., Velhote, D. & da Silveira, I.C.A. 2000. Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophysical Research Letters, 27(6): 751-754. https://doi.org/10.1029/1999GL010502 DOI: https://doi.org/10.1029/1999GL010502
Campos, P.C., Möller Jr., O.O., Piola, A.R. & Palma, E.D. 2013. Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). Journal of Geophysical Research: Oceans, 118: 1420-1433. https://doi.org/10.1002/jgrc.20131 DOI: https://doi.org/10.1002/jgrc.20131
Carassai, J.J., Lavina, E.L.C., Chemale Jr., F. & Girelli, T.J. 2019. Provenance of Heavy Minerals for the Quaternary Coastal Plain of Southernmost Brazil (Rio Grande do Sul State) Journal of Coastal Research, 35 (2): 295-304. https://doi.org/10.2112/JCOASTRES-D-18-00066.1 DOI: https://doi.org/10.2112/JCOASTRES-D-18-00066.1
Chemale Jr., F., Lavina, E.L.C., Carassai, J.J., Girelli, T.J., & Lana, C. 2021. Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin – Paradigm as a source area. Geoscience Frontiers, 12(4): 101119. https://doi.org/10.1016/j.gsf.2020.11.015 DOI: https://doi.org/10.1016/j.gsf.2020.11.015
Ciotti, Á.M., Odebrecht, C., Fillmann, G. & Möller Jr., O.O. 1995. Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Continental Shelf Research, 15(14): 1737-1756. https://doi.org/10.1016/0278-4343(94)00091-Z DOI: https://doi.org/10.1016/0278-4343(94)00091-Z
Clapperton, C.M. 1993. Quaternary Geology and Geomorphology of South America. Elsevier Press, Amsterdam, 779 p.
Collins M., An S.-I., Cai W., Ganachaud, A., Guilyardi, E., Jin, F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi G. & Wittenberg A. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosciences, 3: 391-397. https://doi.org/10.1038/ngeo868 DOI: https://doi.org/10.1038/ngeo868
Corrêa, I.C.S., Medeanic, S., Weschenfelder, J., Toldo Jr., E.E., Nunes, J.C. & Baitelli, R. 2014. The palaeo-drainage of the La Plata River in southern Brazilian shelf. Revista Brasileira de Geofísica, 32(2): 259-271. https://doi.org/10.22564/rbgf.v32i2.481 DOI: https://doi.org/10.22564/rbgf.v32i2.481
Cosentino, N.J., Gaiero, D.M., Torre, G., Pasquini, A.I., Coppo, R., Arce, J.M. & Vélez, G. 2019. Atmospheric dust dynamics in southern South America: A 14-year modern dust record in the loessic Pampean region. The Holocene, 30(4): 575-588. https://doi.org/10.1177/0959683619875198 DOI: https://doi.org/10.1177/0959683619875198
Costa, C. & Ramos, F.T. 1983. Argilo-minerais na plataforma continental sul-brasileira - do Cabo de Sta. Marta ao Chuí. Pesquisas em Geociências, 15: 86-93. https://doi.org/10.22456/1807-9806.21724 DOI: https://doi.org/10.22456/1807-9806.21724
Dave, A.C. & Lozier, M.S. 2013. Examining the global record of interannual variability in stratification and marine productivity in the low-latitude and mid-latitude ocean. Journal of Geophysical Research: Oceans, 118(6): 2761-3221. https://doi.org/10.1002/jgrc.20224 DOI: https://doi.org/10.1002/jgrc.20224
Dillenburg, S.R. & Barboza, E.G. 2014. The strike-fed sandy coast of Southern Brazil. In: Martini I.P. and Wanless H.R. (eds.), Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences. Geological Society of London, Special Publications vol. 388, p. 333-352. https://doi.org/10.1144/SP388.16. DOI: https://doi.org/10.1144/SP388.16
Dillenburg, S.R., Barboza, E.G., Rosa, M.L.C.C., Caron, F., Cancelli, R., Santos-Fischer, C.B., Lopes, R.P. & Ritter, M.N. 2019. Sedimentary records of Marine Isotopic Stage 3 (MIS 3) in southern Brazil. Geo-Marine Letters, 40: 1099-1108. https://doi.org/10.1007/s00367-019-00574-2 DOI: https://doi.org/10.1007/s00367-019-00574-2
Doughty, A.M., Kaplan, M.R., Peltier, C. & Barker, S. 2021. A maximum in global glacier extent during MIS 4. Quaternary Science Reviews, 261: 106948. https://doi.org/10.1016/j.quascirev.2021.106948 DOI: https://doi.org/10.1016/j.quascirev.2021.106948
Dutton, A. & Lambeck, K. 2012. Ice volume and sea level during the last interglacial. Science, 337: 216-219. https://doi.org/10.1126/science.1205749 DOI: https://doi.org/10.1126/science.1205749
Emilsson, I. 1961. The shelf and coastal waters off southern Brazil. Boletim do Instituto de Oceanografia, 11(2): 101-112. https://doi.org/10.1590/S0373-55241961000100004 DOI: https://doi.org/10.1590/S0373-55241961000100004
Fearnside, P.M. 2005. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conservation Biology, 19(3): 680-688. https://www.jstor.org/stable/3591054 DOI: https://doi.org/10.1111/j.1523-1739.2005.00697.x
Frozza, C.F., Pivel, MAG., Suárez-Ibarra, J.Y., Ritter, M.N. & Coimbra, J.C. 2020. Age model of sediment core SAT-048A. PANGAEA, https://doi.org/10.1594/PANGAEA.911844,
Gaiero, D.M., Probst, J.-L., Depetris, P.J., Bidart, S.M. & Leleyter, L. 2003. Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean. Geochimica et Cosmochimkica Acta, 67(9): 3603-3623. https://doi.org/10.1016/S0016-7037(03)00211-4 DOI: https://doi.org/10.1016/S0016-7037(03)00211-4
Gaiero, D.M., Simonella, L., Gassó, S., Gili, S., Stein, A.F., Sosa, P., Becchio, R., Arce, J. & Marelli, H. 2013. Ground/satellite observations and atmospheric modeling of dust storms originating in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives. Journal of Geophysical Research: Atmospheres, 118(9): 3425-3917. https://doi.org/10.1002/jgrd.50036 DOI: https://doi.org/10.1002/jgrd.50036
Gaiero, D.M. 2007. Dust provenance in Antarctic ice during glacial periods: From where in southern South America? Geophysical Research Letters, 34: L17707. https://doi.org/10.1029/2007GL030520 DOI: https://doi.org/10.1029/2007GL030520
García, J.-L., Hein, A.S., Binnie, S.A., Gómez, G.A., González, M.A. & Dunai Tibor, J. 2018. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quaternary Science Revews, 185: 9-26. https://doi.org/10.1016/j.quascirev.2018.01.013 DOI: https://doi.org/10.1016/j.quascirev.2018.01.013
Garreaud, R.D., Vuille, M., Compagnucci, R. & Marengo, J. 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4): 180-195. https://doi.org/10.1016/j.palaeo.2007.10.032 DOI: https://doi.org/10.1016/j.palaeo.2007.10.032
Gasparini, G.M., Rabassa, J., Deschamps, C. & Tonni, E.P. 2016. Marine Isotope Stage 3 in Southern South America, 60 Ka BP-30 Ka BP. Springer International Publishing, Switzerland, 354 p. https://doi.org/10.1007/978-3-319-40000-6. DOI: https://doi.org/10.1007/978-3-319-40000-6
Gassó, S. & Torres, O. 2019. Temporal Characterization of dust activity in the central Patagonia desert (years 1964–2017). Journal of Geophysical Research: Atmospheres, 124: 3417-3434. https://doi.org/10.1029/2018JD030209 DOI: https://doi.org/10.1029/2018JD030209
Gambôa, L.A.P., Figueiredo Jr., A.G., Martins, I.R. & Formoso, M.L.L. 1973. Argilo-minerais da plataforma continental do Rio Grande do Sul. In: Congresso Brasileiro de Geologia, 27, Aracaju. Anais..., v. 1: 353-358.
Gili, S., Gaiero, D.M., Goldstein, S.L., Chemale Jr., F., Jweda, J., Kaplan, M.R., Becchio, R.A. & Koester, E. 2017. Glacial/interglacial changes of Southern Hemisphere wind circulation from the geochemistry of South American dust. Earth and Planetary Science Letters, 469: 98–109. https://doi.org/10.1016/j.epsl.2017.04.007 DOI: https://doi.org/10.1016/j.epsl.2017.04.007
Gomes, M.S., Cavalcanti, I.F.A. & Müller, G.V. 2021. 2019/2020 drought impacts on South America and atmospheric and oceanic influences. Weather and Climate Extremes, 34: 100404. https://doi.org/10.1016/j.wace.2021.100404 DOI: https://doi.org/10.1016/j.wace.2021.100404
Gonçalves, J.F. & Leonhardt, A. 2021. A influência dos processos de fundo sobre um registro fóssil de cocolitoforídeos na Bacia de Pelotas. Anais do Instituto de Geociências, 44: 36784. https://doi.org/10.11137/1982-3908_2021_44_36784 DOI: https://doi.org/10.11137/1982-3908_2021_44_36784
González-Silvera, A., Santamaria-del-Angel, E. & Millán-Núñez, R. 2006. Spatial and temporal variability of the Brazil-Malvinas Confluence and the La Plata Plume as seen by SeaWiFS and AVHRR imagery. Journal of Geophysical Research, 111: C06010. https://doi.org/10.1029/2004JC002745 DOI: https://doi.org/10.1029/2004JC002745
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Ramsey, C.B., Satow, C. & Roberts, A.P. 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature, 491: 744–747. https://doi.org/10.1038/nature11593 DOI: https://doi.org/10.1038/nature11593
Gu, F., Zonneveld, K.A.F., Chiessi, C.M., Arz, H.W., Pätzold, J. & Behling, H. 2017 Long-term vegetation, climate and ocean dynamics inferred from a 73,500 years old marine sediment core (GeoB2107-3) off southern Brazil. Quaternary Science Reviews, 172: 55-71. https://doi.org/10.1016/j.quascirev.2017.06.028 DOI: https://doi.org/10.1016/j.quascirev.2017.06.028
Gu, F., Chessi, C.M., Zonneveld, K.A.F. & Behling, H. 2019. Shifts of the Brazil-Falklands/Malvinas Confluence in the western South Atlantic during the latest Pleistocene–Holocene inferred from dinoflagellate cysts. Palynology, 43(3): 483-493. https://doi.org/10.1080/01916122.2018.1470116 DOI: https://doi.org/10.1080/01916122.2018.1470116
Hearty, P.J., Hollin, J.T., Neumann, A.C., O'Leary, M.J. & McCulloch, M. 2007. Global sea-level fluctuations during the last interglacial (MIS 5e). Quaternary Science Reviews, 26(17-18): 2090-2112. https://doi.org/10.1016/j.quascirev.2007.06.019 DOI: https://doi.org/10.1016/j.quascirev.2007.06.019
Helm, K.P., Bindoff, N.L. & Church, J.A. 2011. Observed decreases in oxygen content of the global ocean. Geophysical Research Letters, 38(23): L23602. https://doi.org/10.1029/2011GL049513 DOI: https://doi.org/10.1029/2011GL049513
Heusser, C.J. 1974. Vegetation and climate of the southern Chilean lake district during and since the last interglaciation. Quaternary Research, 4(3): 290-315. https://doi.org/10.1016/0033-5894(74)90018-0 DOI: https://doi.org/10.1016/0033-5894(74)90018-0
Heusser, C.J. 1989. Southern westerlies during the Last Glacial Maximum. Quaternary Research, 31(3): 423-425. https://doi.org/10.1016/0033-5894(89)90049-5 DOI: https://doi.org/10.1016/0033-5894(89)90049-5
Heusser, L., Heusser, C., Mix, A.& McManus, J. 2006. Chilean and Southeast Pacific paleoclimate variations during the last glacial cycle: directly correlated pollen and δ18O records from ODP Site 1234. Quaternary Science Reviews, 25(23-24): 3404-3415. https://doi.org/10.1016/j.quascirev.2006.03.011 DOI: https://doi.org/10.1016/j.quascirev.2006.03.011
Hulton, N, Sugden, D, Payne, A. & Clapperton, C. 1994. Glacier modeling and the climate of Patagonia during the Last Glacial Maximum. Quaternary Research, 42(1): 1-19. https://doi.org/10.1006/qres.1994.1049 DOI: https://doi.org/10.1006/qres.1994.1049
Iriondo, M.H. 1997. Models of deposition of loess and loessoids in the Upper Quaternary of South America. Journal of South American Earth Sciences, 10(1): 71-79. https://doi.org/10.1016/S0895-9811(97)00006-0 DOI: https://doi.org/10.1016/S0895-9811(97)00006-0
Iriondo, M.H. 1999. Last Glacial Maximum and Hypsithermal in the Southern Hemisphere. Quaternary International, 62(1): 11-19. https://doi.org/10.1016/s1040-6182(99)00019-1 DOI: https://doi.org/10.1016/S1040-6182(99)00019-1
Iriondo, M.H. 2000. Patagonian dust in Antarctica. Quaternary International, 68-71: 83-86. https://doi.org/10.1016/s1040-6182(00)00035-5 DOI: https://doi.org/10.1016/S1040-6182(00)00035-5
Iriondo, M.H. & Kröhling, D.M. 1995. El Sistema Eólico Pampeano. Comunicaciones del Museo Provincial de Ciencias Naturales "Florentino Ameghino", 5(1): 1-68.
Johnson, M.J., Meskhidze, N., Kiliyanpilakkil, V.P. & Gassó, S. 2011. Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean. Atmospheric Chemistry and Physics, 11: 2487-2502. https://doi.org/10.5194/acp-11-2487-2011 DOI: https://doi.org/10.5194/acp-11-2487-2011
Kaiser, J. & Lamy, F. 2010. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2). Quaternary Science Reviews, 29: 1464-1471. https://doi.org/10.1016/j.quascirev.2010.03.005 DOI: https://doi.org/10.1016/j.quascirev.2010.03.005
Kaiser, J., Lamy, F. & Hebbeln, D. 2005. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Palaeoceanography, 20: PA4009. https://doi.org/10.1029/2005PA001146 DOI: https://doi.org/10.1029/2005PA001146
Keeling, R.F. & Garcia, H.E. 2002. The change in oceanic O2 inventory associated with recent global warming. Proceedings of the National Academy of Sciences, 99(12): 7848-7853. https://doi.org/10.1073/pnas.122154899 DOI: https://doi.org/10.1073/pnas.122154899
Kowsmann, R.O., Costa, M.P.A., Vicalvi, M.A., Coutinho, M.G.N. & Gambôa, L.A.P. 1977. Modelo da sedimentação holocênica na plataforma continental sul brasileira. Rio de Janeiro, PETROBRÁS, Projeto REMAC, v.2, p. 7-26.
Kumar, N., Anderson, R.F., Mortlock, R.A., Froelich, P.N., Kubik, P., Dittrich-Hannen, B. & Suter, M. 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378: 675-680. https://doi.org/10.1038/378675a0 DOI: https://doi.org/10.1038/378675a0
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stocker, T.F., Ruth, U., Steffensen, J.P. & Maggi, V. 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452: 616-619. https://doi.org/10.1038/nature06763 DOI: https://doi.org/10.1038/nature06763
Lambert, F., Bigler, M., Steffensen, J.P., Hutterli, M. & Fischer, H. 2012. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate of the Past, 8: 609-623. https://doi.org/10.5194/cp-8-609-2012 DOI: https://doi.org/10.5194/cp-8-609-2012
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., Gallardo, L. & De Pol-Holz, R. 2015. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates. Geophysical Research Letters, 42: 6014-6023. https://doi.org/10.1002/2015GL064250 DOI: https://doi.org/10.1002/2015GL064250
Lamy, F., Hebbeln, D. & Wefer, G. 1998. Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 141(3-4): 233-251. https://doi.org/10.1016/S0031-0182(98)90052-9 DOI: https://doi.org/10.1016/S0031-0182(98)90052-9
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G., Ullermann, J., Martínez-Garcia, A., Lambert, F. & Kilian, R. 2014. Increased dust deposition in the Pacific southern ocean during glacial periods. Science, 343: 403-407. https://doi.org/10.1126/science.1245424 DOI: https://doi.org/10.1126/science.1245424
Lantszch, H., Hanebuth, T.J.J., Chiessi, C.M., Schwenk, T. & Violante, R.A. 2014. The high-supply, current-dominated continental margin of southeastern South America during the late Quaternary. Quaternary Research, 81: 339-354. https://doi.org/10.1016/j.yqres.2014.01.003 DOI: https://doi.org/10.1016/j.yqres.2014.01.003
Laprida, C., Chapori, N.G., Chiessi, C.M., Violante, R.A., Watanabe, S. & Totah, V. 2011. Middle Pleistocene sea surface temperature in the Brazil-Malvinas Confluence Zone: Paleoceanographic implications based on planktonic foraminifera. Micropaleontology, 57(2): p. 183-194. https://www.jstor.org/stable/41410980 DOI: https://doi.org/10.47894/mpal.57.2.06
Latif, M. & Keenlyside, N.S. 2008. El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences, 106(49): 20578-20583. https://doi.org/10.1073pnas.0710860105 DOI: https://doi.org/10.1073/pnas.0710860105
Ledru, M.-P., Braga, P.I.S., Soubiès, F., Fournier, M., Martin, L., Suguio, K. & Turcq, B. 1996. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 123(1-4): 239-257. https://doi.org/10.1016/0031-0182(96)00105-8 DOI: https://doi.org/10.1016/0031-0182(96)00105-8
Ledru, M.-P., Cordeiro, R.C., Dominguez, J.M.L., Martin, L., Mourguiart, P. & Sifeddine, A. 2001. Late-glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, northern Brazil. Quaternary Research, 55(1): 47-56. https://doi.org/10.1006/qres.2000.2187 DOI: https://doi.org/10.1006/qres.2000.2187
Li, G., Cheng, L., Zhu, J., Trenberth, K.E., Mann, M.E. & Abraham, J.P. 2020. Increasing ocean stratification over the past half-century. Nature Climate Change, 10: 1116-1123. https://doi.org/10.1038/s41558-020-00918-2 DOI: https://doi.org/10.1038/s41558-020-00918-2
Lima, S.F., Almeida, L.E. & Toldo Jr., E.E. 2001. Estimativa da capacidade de transporte longitudinal de sedimentos a partir de dados de ondas para a costa do Rio Grande do Sul. Pesquisas em Geociências, 28(2): 99-107. https://doi.org/10.22456/1807-9806.20272 DOI: https://doi.org/10.22456/1807-9806.20272
Lisiecki, L.E. & Raymo, M.E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. https://doi.org/10.1029/2004PA001071 DOI: https://doi.org/10.1029/2004PA001071
Lisniowski, M.A. & Alves, R.A. 2018a. Mapa de retroespalhamento acústico do Terraço do Rio Grande (Escala 1:250.000). CPRM, Rio de Janeiro. http://rigeo.cprm.gov.br/jspui/handle/doc/20429.
Lisniowski, M.A. & Alves, R.A. 2018b. Mapa Batimétrico do Terraço do Rio Grande - Escala 1:250.000). CPRM, Rio de Janeiro. http://rigeo.cprm.gov.br/jspui/handle/doc/20428.
Lopes, R.P., Dillenburg, S.R. & Schultz, C.L. 2016a. Cordão Formation: loess deposits in the southern coastal plain of the state of Rio Grande do Sul. Brazil. Anais da Academia Brasileira de Ciências, 88(4): 2143-2166. https://doi.org/10.1590/0001-3765201620150738 DOI: https://doi.org/10.1590/0001-3765201620150738
Lopes, R.P., Dillenburg, S.R., Sial, A.N., Guadagnin, F. & Caron, F. 2016a. The Caliche Cordão of the southern coastal plain of Rio Grande do Sul, Brazil. In: Congresso Brasileiro de Geologia, 48, 2016, Porto Alegre. Anais: http://cbg2017anais.siteoficial.ws/sts/st29.htm
Lopes, R.P., Pereira, J.C., Kinoshita, A., Mollemberg, M., Barbosa Jr., F., & Baffa, O. 2020a. Geological and taphonomic significance of electron spin resonance (ESR) ages of Middle-Late Pleistocene marine shells from barrier-lagoon systems of Southern Brazil. Journal of South American Earth Sciences, 101: 102605. https://doi.org/10.1016/j.jsames.2020.102605 DOI: https://doi.org/10.1016/j.jsames.2020.102605
Lopes, R.P., Pereira, J.C., Dillenburg, S.R., Tatumi, S.H., Yee, M., Figueiredo, A.M.G., Kinoshita, A. & Baffa, O. 2020b. Late Pleistocene-Holocene fossils from Mirim Lake, southern Brazil, and their paleoenvironmental significance: I - vertebrates. Journal of South American Earth Sciences, 100: 102566. https://doi.org/10.1016/j.jsames.2020.102566 DOI: https://doi.org/10.1016/j.jsames.2020.102566
Lopes, R.P., Bonetti, C., Santos, G.S., Pivel, M.A.G., Petró, S., Caron, F. & Bonetti, J. 2021a. Late Pleistocene sediment accumulation in the lower slope off the Rio Grande terrace, southern Brazilian Continental Margin. Quaternary International, 571: 97-116. https://doi.org/10.1016/j.quaint.2020.12.022 DOI: https://doi.org/10.1016/j.quaint.2020.12.022
Lopes, R.P., Dillenburg, S.R., Savian, J.F. & Corrêa, J.C. 2021b. The Santa Vitória Alloformation: an update on a Pleistocene fossil-rich unit in Southern Brazil. Brazilian Journal of Geology, 51(1): e2020065. https://doi.org/10.1590/2317-4889202120200065 DOI: https://doi.org/10.1590/2317-4889202120200065
Lopes, R.P., Scherer, C.S., Pereira, J.C. & Dillenburg, S.R. 2023. Paleoenvironmental changes in the Brazilian Pampa based on carbon and oxygen stable isotope analysis of Pleistocene camelid tooth enamel. Journal of Quaternary Sciences, 38(5): 702-718. https://doi.org/10.1002/jqs.3502 DOI: https://doi.org/10.1002/jqs.3502
Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D.M., Hesse, P.P. & Balkanski, Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews, 99(1-2): 61-97. https://doi.org/10.1016/j.earscirev.2009.12.001 DOI: https://doi.org/10.1016/j.earscirev.2009.12.001
Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S.P., Prentice, I.C., Schulz, M. & Rodhe, H. 1999. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, 104(D13): 15895-15916. https://doi.org/10.1029/1999JD900084 DOI: https://doi.org/10.1029/1999JD900084
Martin, J.H. 1990. Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography and Paleoclimatology, 5(1): 1-13. https://doi.org/10.1029/PA005i001p00001 DOI: https://doi.org/10.1029/PA005i001p00001
Martínez-García, A., Rosell-Melé, A., Jaccard, S.L., Geibert, W., Sigman, D.M. & Haug, G.H. 2011. Southern Ocean dust–climate coupling over the past four million years. Nature, 476: 312-316. https://doi.org/10.1038/nature10310 DOI: https://doi.org/10.1038/nature10310
Martínez-García, A., Sigman, D.M., Ren, H., Anderson, R.F., Straub, M., Hodell, D.A., Jaccard, S.L., Eglinton, T.I. & Haug, G.H. 2014. Iron fertilization of the subantarctic ocean during the last ice age. Science, 343: 1347-1350. https://doi.org/10.1126/science.1246848 DOI: https://doi.org/10.1126/science.1246848
Matano, R.P., Schlax, M.G. & Chelton, D.B. 1993. Seasonal variability in the southwestern Atlantic. Journal of Geophysical Research, 98(C10): 18027-18035. https://doi.org/10.1029/93jc01602 DOI: https://doi.org/10.1029/93JC01602
Matano, R.P., Combes, V., Piola, A.R. et al. 2014. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: numerical simulations. Journal of Geophysical Research: Oceans, 119(1): 7949-7968. https://doi.org/10.1002/2014JC010113 DOI: https://doi.org/10.1002/2014JC010116
Mohtadi, M. & Hebbeln, D. 2004. Mechanisms and variations of the paleoproductivity off northern Chile (24°S–33°S) during the last 40,000 years, Paleoceanography, 19: PA2023. https://doi.org/10.1029/2004PA001003 DOI: https://doi.org/10.1029/2004PA001003
Mourelle, D., del Puerto, L., Pérez, L., Bergamino, L. & García-Rodríguez, F. 2020. Late Pleistocene and Late Holocene environment and climate in the campos region of southeastern South America inferred from phytolith, diatom and geochemical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 543:109586. https://doi.org/10.1016/j.palaeo.2020.109586. DOI: https://doi.org/10.1016/j.palaeo.2020.109586
Naumann, G., Podestá, G., Marengo, J., Luterbacher, J., Bavera, D., Arias Muñoz, C., Barbosa, P., Cammalleri, C., Chamorro, L., Cuartas, A., de Jager, A., Escobar, C., Hidalgo, C., Leal de Moraes, O., McCormick N., Maetens, W., Magni, D., Masante, D., Mazzeschi, M., Seluchi, M., Skansi, M. M., Spinoni, J. & Toreti., A. 2021. The 2019-2021 extreme drought episode in La Plata Basin. EUR 30833 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-41898-6. https://doi.org/10.2760/773.
Noble, T.L., Piotrowski, A.M., Robinson, L.F., McManus, J.F., Hillenbrand, C.-D. & Bory, A.J.-M. 2012. Greater supply of Patagonian-sourced detritus and transport by the ACC to the Atlantic sector of the Southern Ocean during the last glacial period. Earth and Planetary Science Letters, 317-318: 374–385. https://doi.org/10.1016/j.epsl.2011.10.007 DOI: https://doi.org/10.1016/j.epsl.2011.10.007
Palma, E.D., Matano, R.P. & Piola, A.R. 2008. A numerical study of the Southwestern Atlantic shelf circulation: Stratified Ocean response to local and offshore forcing. Journal of Geophysical Research, 113: C11010. https://doi.org/10.1029/2007JC004720 DOI: https://doi.org/10.1029/2007JC004720
Panario, D. & Gutiérrez, O. 1999. The continental Uruguayan Cenozoic: an overview. Quaternary International, 62(1): 75-84. https://doi.org/10.1016/S1040-6182(99)00025-7 DOI: https://doi.org/10.1016/S1040-6182(99)00025-7
Paparazzo, F.E., Crespi-Abril, A.C., Gonçalves, R.J., Barbieri, E.S., Gracia Villalobos, L.L., Solís, M.E. & Soria, G. 2018. Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography, 31(4): 33-39. https://doi.org/10.5670/oceanog.2018.408. DOI: https://doi.org/10.5670/oceanog.2018.408
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J.P., Svensson, A., Udisti, R., Waelbroeck, C. & E. Wolff 2007. The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 3: 485-497. https://doi.org/10.5194/cp-3-485-2007 DOI: https://doi.org/10.5194/cp-3-485-2007
Peltier, C., Kaplan, M.R., Birkel, S.D., Soteres, R.L., Sagredo, E.A., Aravena, J.C., Araos, J., Moreno, P.I., Schwartz, R. & Schaefer, J.M. 2021. The large MIS 4 and long MIS 2 glacier maxima on the southern tip of South America. Quaternary Science Reviews, 262: 106858. https://doi.org/10.1016/j.quascirev.2021.106858 DOI: https://doi.org/10.1016/j.quascirev.2021.106858
Pereira, C.S. 1989. Seasonal variability in the coastal circulation on the Brazilian continental shelf (29°S-35°S). Continental Shelf Research, 9(3): 285-299. https://doi.org/10.1016/0278-4343(89)90029-0 DOI: https://doi.org/10.1016/0278-4343(89)90029-0
Pereira, L.S., Arz, H.W., Pätzold, J. & Portilho-Ramos, R.C. 2018. Productivity evolution in the south Brazilian bight during the last 40,000 years. Paleoceanography and Paleoclimatology, 33(12): 1339-1356. https://doi.org/10.1029/2018PA003406 DOI: https://doi.org/10.1029/2018PA003406
Petró, S.M. 2018. Dissolução de Foraminíferos Quaternários do Atlântico Sul: da perda de CaCO3 ao ganho de informação paleoceanográfica. PhD Thesis. Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Geociências, 146 p. http://hdl.handle.net/10183/174078
Petró, S.M., Pivel, M.A.G. & Coimbra, J.C. 2021. Evidence of supra-lysoclinal dissolution of pelagic calcium carbonate in the late Quaternary in the western South Atlantic. Marine Micropaleontology, 166: 102013. https://doi.org/10.1016/j.marmicro.2021.102013 DOI: https://doi.org/10.1016/j.marmicro.2021.102013
Pico, T., Mitrovica, J.X., Ferier, K.L. & Braun, J. 2016. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quaternary Science Reviews, 152: 72-79. https://doi.org/10.1016/j.quascirev.2016.09.012 DOI: https://doi.org/10.1016/j.quascirev.2016.09.012
Pimenta, F.M., Campos, E.J.D., Miller, J.L. & Piola, A.R. 2005. A numerical study of the La Plata River plume along the southeastern South American continental shelf. Brazilian Journal of Oceanography, 53(3/4): 129-146. DOI: https://doi.org/10.1590/S1679-87592005000200004
Piola, A.R., Campos, E.J.D., Môller Jr., O.O., Charo, M. & Martinez, C. 2000. Subtropical shelf front off eastern South America. Journal of Geophysical Research, 105(C3): 6565-6578. https://doi.org/10.1029/1999JC000300 DOI: https://doi.org/10.1029/1999JC000300
Piola, A.R., Matano, R.P., Palma, E.D., Môller Jr., O.O. & Campos, E.J.D. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32: L01603. https://doi.org/10.1029/2004GL021638 DOI: https://doi.org/10.1029/2004GL021638
Piola, A.R. & Matano, R.P. 2009. Brazil and Falklands (Malvinas) currents. In: Steele J.H., Thorpe S.A., Turekian K.K. (eds.), Encyclopedia of Ocean Sciences (2nd ed.), v.1, p. 422-430. DOI: https://doi.org/10.1016/B978-012374473-9.00358-1
Portilho-Ramos, R.C., Pinho, T.M.L., Chiessi, C.M. & Barbosa, C.F. 2019. Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin. Climate of the Past, 15(3): 943-955. https://doi.org/10.5194/cp-15-943-2019 DOI: https://doi.org/10.5194/cp-15-943-2019
Potter, E.-K., Esat, T.M., Schellmann, G., Radtke, U., Lambeck, K. & McCulloch, M.T. 2004. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth and Planetary Science Letters, 225: 191-204. https://doi.org/10.1016/j.epsl.2004.05.034 DOI: https://doi.org/10.1016/j.epsl.2004.05.034
Prieto, A.R. 1996. Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research, 45(1): 73-88. https://doi.org/10.1006/qres.1996.0007 DOI: https://doi.org/10.1006/qres.1996.0007
Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E. & Gill, T.E. 2002. Environmental characterization of global sources of atmospheric soil dust. Reviews of. Geophysics, 40(1): 1002. https://doi.org/10.1029/2000RG000095 DOI: https://doi.org/10.1029/2000RG000095
Quattrochio, M.E. & Borromei, A.M. 1998. Paleovegetational and paleoclimatic changes during the late Quaternary in southwestern Buenos Aires Province and southern Tierra Del Fuego (Argentina). Palynology, 22(1): 67-82. DOI: https://doi.org/10.1080/01916122.1998.9989503
Rabineau, M., Berné, S., Olivet, J.-L., Aslanian, D., Guillocheau, F. & Joseph, P. 2006. Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 yr). Earth and Planetary Science Letters, 252(1–2): 119-137. https://doi.org/10.1016/j.epsl.2006.09.033 DOI: https://doi.org/10.1016/j.epsl.2006.09.033
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G. & Taucanne, S. 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111: 94-106. https://doi.org/10.1016/j.quascirev.2015.01.012 DOI: https://doi.org/10.1016/j.quascirev.2015.01.012
Rao, V.B., Franchito, S.H., Santo, C.M.E. & Gan, M.A. 2016. An update on the rainfall characteristics of Brazil: seasonal variations and trends in 1979–2011. International Journal of Climatology, 36: 291-302. https://doi.org/10.1002/joc.4345 DOI: https://doi.org/10.1002/joc.4345
Rao, V.B., Franchito, S.H., Rosa, M.B., Govardhan, D., Figueroa, S.N. & Bhargavi, V.S.L. 2022. In a changing climate Hadley cell induces a record flood in amazon and another recorded drought across South Brazil in 2021. Natural Hazards, 114: 1549-1561. https://doi.org/10.1007/s11069-022-05437-1 DOI: https://doi.org/10.1007/s11069-022-05437-1
Reid, J.R., Nowlin Jr., W.D. & Patzert, W.C. 1977. On the characteristics and circulation of the southwesterm Atlantic Ocean. Journal of Physical Oceanography, 7: 62-91. https://doi.org/10.1175/1520-0485(1977)007<0062:OTCACO>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0485(1977)007<0062:OTCACO>2.0.CO;2
Rivera, J.A., Otta, S., Lauro, C. & Zazulle, N. 2021. A decade of hydrological drought in central-western Argentina. Frontiers in Water, 3: 640544. https://doi.org/10.3389/frwa.2021.640544 DOI: https://doi.org/10.3389/frwa.2021.640544
Rodrigues, A.R., Pivel, M.A.G., Schmitt, P., de Almeida, F.K. & Bonetti, C. 2018. Infaunal and epifaunal benthic foraminifera species as proxies of organic matter paleofluxes in the Pelotas Basin, south-western Atlantic Ocean. Marine Micropaleontology, 144: 38-49. https://doi.org/10.1016/j.marmicro.2018.05.00 DOI: https://doi.org/10.1016/j.marmicro.2018.05.007
Rohling ,E.J., Fenton, M., Jorissen, F.J., Bertrand, P., Ganssen, G. & Caulet, J.P. 1998. Magnitudes of sea-level lowstands of the past 500,000 years. Nature, 394: 162-165. https://doi.org/10.1038/28134. DOI: https://doi.org/10.1038/28134
Satyamurty, P., Nobre, C.A. & Dias, P.L.S. 1998. South America. In: Koroly D.J. and Vincent D.G. (eds.), Meteorology of the Southern Hemisphere. Meteorological Monographs, 27(49): 119-139. DOI: https://doi.org/10.1007/978-1-935704-10-2_5
Schaefer, J.M., Putnam, A.E., Denton, G.H., Kaplan, M.R., Birkel, S., Doughty, A.M., Kelley, S., Barrell, D.J.A., Finkel, R.C., Winckler, G., Anderson, R.F., Ninneman, U.S., Barker, S., Schwartz, R., Andersen, B.G. & Schluechter, C. 2015. The southern glacial maximum 65,000 years ago and its unfinished termination. Quaternary Science Reviews, 114: 52-60. https://doi.org/10.1016/j.quascirev.2015.02.009 DOI: https://doi.org/10.1016/j.quascirev.2015.02.009
Schmitt, P., Rodrigues, A.R. & Bonetti, C. 2019. Sucessão de associações de foraminíferos bentônicos como indicadoras de variações paleoceanográficas no terraço de Torres (RS-Brasil) durante o Quaternário. Anuário do Instituto de Geociências, 42(4): 387-395. https://doi.org/10.11137/2019_4_387_395 DOI: https://doi.org/10.11137/2019_4_387_395
Shoenfelt, E.M., Winckler, G., Lamy, F., Anderson, R.F. & Bostick, B.C. 2018. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proceedings of the National Academy of Sciences, 115(44): 11180-11185. https://doi.org/10.1073/pnas.1809755115 DOI: https://doi.org/10.1073/pnas.1809755115
Silva, M.E.S., Pereira, G. & da Rocha, R.P. 2016. Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”. Theoretical and Applied Climatology, 125: 609-623. https://doi.org/10.1007/s00704-015-1516-9 DOI: https://doi.org/10.1007/s00704-015-1516-9
Soares, W.R. & Marengo, J.A. 2009. Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. International Journal of Climatology, 29: 1395-1414. https://doi.org/10.1002/joc.1800 DOI: https://doi.org/10.1002/joc.1800
de Souza, R.B. & Robinson, I.R. 2004. Lagrangian and satellite observations of the Brazilian Coastal Current. Continental Shelf Research, 24: 241-262. https://doi.org/10.1016/j.csr.2003.10.001 DOI: https://doi.org/10.1016/j.csr.2003.10.001
Spinoni, J., Barbosa, P., Bucchignani, E. et al. 2020. Future global meteorological drought hot spots: a study based on CORDEX data. Journal of Climatology, 33: 3635-3661. https://doi.org/10.1175/JCLI-D-19-0084.1 DOI: https://doi.org/10.1175/JCLI-D-19-0084.1
Stevaux, J.C. 2000. Climatic events during the late Pleistocene and Holocene in the upper Paraná River: Correlation with NE Argentina and South-Central Brazil. Quaternary International, 72(1): 73-85. https://doi.org/10.1016/S1040-6182(00)00023-9 DOI: https://doi.org/10.1016/S1040-6182(00)00023-9
Stramma, L. & England, M. 1999. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophyical Research: Oceans, 104(C9): 20863-20883. https://doi.org/10.1029/1999jc900139 DOI: https://doi.org/10.1029/1999JC900139
Suárez-Ibarra, J.Y., Frozza, C.F., Palhano, P.L., Petró, S.M., Weinkauf, M.F.G. & Pivel, M.A.G. 2022. Calcium carbonate dissolution triggered by high productivity during the last glacial–interglacial interval in the deep western South Atlantic. Frontiers in Earth Sciences, 10: 830984. https://doi.org/10.3389/feart.2022.830984 DOI: https://doi.org/10.3389/feart.2022.830984
Sugden, D.E., McCulloch, R.D., Bory, A.J.-M. & Hein, A.S. 2009. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nature Geosciences, 2: 281-285. https://doi.org/10.1038/NGEO474 DOI: https://doi.org/10.1038/ngeo474
Sun, X., Corliss, B.H., Brown, C.W. & Shower, W.J. 2006. The effect of primary productivity and seasonality on the distribution of deep sea benthic foraminifera in the North Atlantic. Deep Sea Research, Part I, 53(1): 28-47. https://doi.org/10.1016/j.d sr.2005.07.003 DOI: https://doi.org/10.1016/j.dsr.2005.07.003
Thomas, E. & Gooday, A.J. 1996. Cenozoic deep-sea benthic foraminifers: Tracers for changes in oceanic productivity? Geology, 24(4): 355-358. https://doi.org/10.1130/0091-7613(1996)024<0355:cdsbft>2.3.co DOI: https://doi.org/10.1130/0091-7613(1996)024<0355:CDSBFT>2.3.CO;2
Thomas, E., Booth, L., Maslin, M. & Shackleton, N.J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up. Paleoceanography and Paleoclimatology, 10(3): 545-562. https://doi.org/10.1029/94PA03056 DOI: https://doi.org/10.1029/94PA03056
Tonello, M.S. & Prieto, A.R. 2010. Tendencias climáticas para los pastizales pampeanos durante el Pleistoceno tardío-Holoceno: estimaciones cuantitativas basadas en secuencias polínicas fósiles. Ameghiniana, 47(4): 501-514. DOI: https://doi.org/10.5710/AMGH.v47i4.7
Torre, G., Gaiero, D.M., Sawakuchi, A.O., del Río, I. & Coppo, R. 2019. Revisiting the chronology and environmental conditions for the accretion of late Pleistocene-early Holocene Pampean loess (Argentina). Quaternary Science Reviews, 213: 105-119. https://doi.org/10.1016/j.quascirev.2019.04.018 DOI: https://doi.org/10.1016/j.quascirev.2019.04.018
Torre, G., Gaiero, D.M., Coppo, R., Cosentino, N., Goldstein, S., De Vleeschouwer, F., Le Roux, G., Bolge, L., Kiro, Y. & Sawakuchi, A.O. 2022. Unraveling late Quaternary atmospheric circulation in the Southern Hemisphere through the provenance of Pampean loess. Earth-Science Reviews, 232: 104143. https://doi.org/10.1016/j.earscirev.2022.104143 DOI: https://doi.org/10.1016/j.earscirev.2022.104143
van den Heuvel, E.P.J. 1966. On the precession as a cause of Pleistocene variations of the Atlantic Ocean water temperatures. Geophysical Journal International, 11(3): 323-336. https://doi.org/10.1111/j.1365-246X.1966.tb03086.x DOI: https://doi.org/10.1111/j.1365-246X.1966.tb03086.x
Villwock, J.A. & Tomazelli, L.J. 1995. Geologia Costeira do Rio Grande do Sul. Notas Técnicas, 8: 1-45.
Voelker, A.H.L. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews, 21(10): 1185–1212. https://doi.org/10.1016/s0277-3791(01)00139-1 DOI: https://doi.org/10.1016/S0277-3791(01)00139-1
Weber, M.E., Kuhn, G., Sprenk, D., Rolf, C., Ohlwein, C. & Ricken, W. 2012. Dust transport from Patagonia to Antarctica e A new stratigraphic approach from the Scotia Sea and its implications for the last glacial cycle. Quaternary Science Reviews, 36: 177-188. https://doi.org/10.1016/j.quascirev.2012.01.016 DOI: https://doi.org/10.1016/j.quascirev.2012.01.016
Williams, G.E. 1993. History of the Earth's obliquity. Earth-Science Reviews, 34: 1-45. DOI: https://doi.org/10.1016/0012-8252(93)90004-Q
Yamaguchi, R. & Suga, T. 2019. Trend and variability in global upper‐ocean stratification since the 1960s. Journal of Geophysical Research: Oceans, 124: 8933-8948. https://doi.org/10.1029/2019JC015439 DOI: https://doi.org/10.1029/2019JC015439
Yung, Y.L., Lee, T., Wang, C.-H. & Shieh, Y.-T. 1996. Dust: A Diagnostic of the Hydrologic Cycle During the Last Glacial Maximum. Science, 271: 962-963. https://doi.org/10.1126/science.271.5251.9 DOI: https://doi.org/10.1126/science.271.5251.962
Zárate, M.A. 2006. Loess Records/South America. In: Elias, S.A. (ed.), Encyclopedia of Quaternary Science. Elsevier Science, Amsterdam, p. 1466-1479. DOI: https://doi.org/10.1016/B0-44-452747-8/00165-4
Zárate, M.A. & Tripaldi, A. 2012. The aeolian system of central Argentina. Aeolian Research, 3(4): 401-417.https://doi.org/10.1016/j.aeolia.2011.08.002 DOI: https://doi.org/10.1016/j.aeolia.2011.08.002
Zárate, M.A., Mehl, A. & Tripaldi, A. 2016. The Continental Record of Marine Isotope Stage 3 (MIS 3; ~60–25 ka) in Central Argentina: Evidence from Fluvial and Aeolian Sequences. In: Gasparini, G.M., Rabassa, J., Deschamps, C. & Tonni, E.P. (eds.), Marine Isotope Stage 3 in Southern South America, 60 Ka BP-30 Ka BP. Springer International Publishing, Switzerland, p. 167-181. https://doi.org/10.1007/978-3-319-40000-6_10 DOI: https://doi.org/10.1007/978-3-319-40000-6_10
Zech, R., Zech, J., Kull, Ch., Kubik, P.W. & Veit, H. 2011. Early last glacial maximum in the southern Central Andes reveals northward shift of the westerlies at ~39 ka. Climate of the Past, 7: 41-46. https://doi.org/10.5194/cp-7-41-2011 DOI: https://doi.org/10.5194/cp-7-41-2011
Zembruscki, S.G. 1979. Geomorfologia da margem continental sul brasileira e da bacia oceânica adjacente. Rio de Janeiro, PETROBRÁS, Projeto REMAC, v.7, p. 129-177.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.