Artificial Neural Networks on Eggs Production Data Management

Authors

  • Luiz Gabriel Barreto de Almeida Universidade Federal do Rio Grande do Sul
  • Éder Barbosa de Oliveira Universidade Federal do Rio Grande do Sul
  • Thales Quedi Furian Universidade Federal do Rio Grande do Sul
  • Karen Apellanis Borges Universidade Federal do Rio Grande do Sul
  • Daniela Tonini da Rocha Centro de Diagnóstico e Pesquisa em Patologia Aviária Departamento de Medicina Animal Faculdade de Veterinária
  • Carlos Tadeu Pippi Salle Universidade Federal do Rio Grande do Sul
  • Hamilton Luiz de Souza Moraes Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.22456/1679-9216.101462

Abstract

Background: Eggs have acquired a greater importance as an inexpensive and high-quality protein. The Brazilian egg industry has been characterized by a constant production expansion in the last decade, increasing the number of housed animals and facilitating the spread of many diseases. In order to reduce the sanitary and financial risks, decisions regard­ing the production and the health status of the flock must be made based on objective criteria. The use of Artificial Neural Networks (ANN) is a valuable tool to reduce the subjectivity of the analysis. In this context, the aim of this study was at validating the ANNs as viable tool to be employed in the prediction and management of commercial egg production flocks.

Materials, Methods & Results: Data from 42 flocks of commercial layer hens from a poultry company were selected. The data refer to the period between 2010 and 2018 and it represents a total of 600,000 layers. Six parameters were selected as “output” data (number of dead birds per week, feed consumption, number of eggs, weekly weight, weekly egg produc­tion and flock uniformity) and a total of 13 parameters were selected as “input” data (flock age, flock identification, total hens in the flock, weekly weight, flock uniformity, lineage, weekly mortality, absolute number of dead birds, eggs/hen, weekly egg production, feed consumption, flock location, creation phase). ANNs were elaborated by software programs NeuroShell Predictor and NeuroShell Classifier. The programs identified input variables for the assembly of the networks seeking the prediction of the variables called outgoing that are subsequently validated. This validation goes through the comparison between the predictions and the real data present in the database that was the basis for the work. Validation of each ANN is expressed by the specific statistical parameters multiple determination (R2) and Mean Squared Error (MSE). For instance, R2 above 0.70 expresses a good validation. ANN developed for the output variable “number of dead birds per week” presented R2= 0.9533 and MSE= 256.88. For “feed consumption”, the results were R2= 0.7382 and MSE= 274.56. For “number of eggs (eggs/hen)”, the results were R2= 0.9901 and MSE= 172.26. For “weekly weight”, R2= 0.9712 and MSE= 11154.41. For “weekly egg production”, R2= 0.8015 and MSE= 72.60. For “flock uniformity”, R2= -2.9955 and MSE= 431.82.

Discussion: From the six ANN designed in this study, in five it was possible to validate the predictions by comparing predictions with the real data. In one output parameter (“flock uniformity”), it was not possible to have adequate validation due to insufficient data in our database. For “number of dead birds per week”, “feed consumption”, “weekly weight” and “uniformity”, the most important variable was “flock age” (27.5%, 52.5%, 55.2% and 37.9%, respectively). For “number of eggs (eggs/hen)”, “uniformity” (52.1%) was the most relevant variable for prediction. For “weekly egg production”, “flock age” and “number of eggs (eggs/hen)” were the most important zootechnical parameters, both with a relative contribution of 38.2%. The results showed that even with the use of a robust tool such as ANNs, it is necessary to have well-noted and clear information that expresses the reality of the flocks. In any case, the results presented allow us to state that ANNs are capable for the management of data generated in a commercial egg production facility. The process of evaluation of these data would be improved if ANNs were routinely used by the professionals linked to this activity.

Downloads

Download data is not yet available.

Author Biographies

Luiz Gabriel Barreto de Almeida, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

Éder Barbosa de Oliveira, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

Thales Quedi Furian, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

Karen Apellanis Borges, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

Carlos Tadeu Pippi Salle, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

Hamilton Luiz de Souza Moraes, Universidade Federal do Rio Grande do Sul

Centro de Diagnóstico e Pesquisa em Patologia Aviária
Departamento de Medicina Animal
Faculdade de Veterinária

References

Abbas S.A., Elseid A.A.G. & Ahmed M.K.A. 2010. Effect of body weight uniformity on the productivity of broiler breeder hens. International Journal of Poultry Science. 9(3):225-230.

Ahmad H.A. 2011. Egg production forecasting: Determining efficient modeling approaches. Journal of Applied Poultry Research. 20(4):463-473.

Associação Brasileira de Proteína Animal (ABPA). 2019. Relatório Anual de 2019. Available in: www.abpa-br.com.br/storage/files/relatorio-anual-2019. [Acessed in March 2020]

Basheer I.A. & Hajmeer M. 2000. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. Journal of Microbiological Methods. 43:3-31.

Carvalho D., Moraes L.B., Chitolina G.Z., Herpich J.I., Osório F.S., Fallavena L.C.B., Moraes H.L.S. & Salle C.T.P. 2016. Evaluation of thymic lymphocyte loss of broiler using Digital Analysis of the Lymphoid Depletion System (ADDL). Pesquisa Veterinária Brasileira. 36(7):652-656.

Casartelli E.M., Filardi R.S., Junqueira O.M., Laurentiz A.C., Assuena V. & Duarte K.F. 2005. Commercial laying hen diets formulated according to different recommendations of total and digestible amino acids. Brazilian Journal of Poultry Science. 7(3):177-180.

Elmadfa I. & Meyer A.L. 2017. Animal proteins as important contributors to a healthy human diet. Annual Review of Animal Biosciences. 8(5):111-131.

Felipe V.P., Silva M.A., Valente B.D. & Rosa G.J. 2015. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poultry Science. 94(4):772-770.

Heier B.T., Hogasen H.R. & Jarp J. 2002. Factors associated with mortality in Norwegian broiler flocks. Preventive Veterinary Medicine. 53(1-2):147-158.

Johnston S.A. & Gous R.M. 2007. A mechanistic, stochastic, population model of egg production. British Poultry Science. 48:224– 232.

Joyner C.J., Peddie, M.J. & Taylor T.G. 1987. The effect of age on egg production in the domestic hen. General and Comparative Endocrinology 65(3):331-336.

Kuhi H.D., Kebreab E., Lopez S. & France J. 2003. An evaluation of different growth functions for describing the profile of live weight with time (age) in meat and egg strains of chicken. Poultry Science. 82(10):1536-1543.

Moraes L.B., Osório F.S., Salle F.O., Souza G.F., Moraes H.L., Fallavena L.C.B., Santos L.R. & Salle C.T.P. 2010. Evaluation of folicular lymphoid depletion in the Bursa of Fabricius: an alternative methodology using digital image analysis and artificial neural networks. Pesquisa Veterinária Brasileira. 30(4):340-344.

Pinto P.R. 2006. Uso de redes neurais artificiais no gerenciamento de matadouros-frigoríficos de aves e suínos no Sul do Brasil. 76f. Porto Alegre, RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Ramírez-Morales I., Fernández-Blanco E., Rivero D. & Pazos A. 2017. Automated early detection of drops in commercial egg production using neural networks. British Poultry Science. 58(6):739-747.

Reali E.H. 2004 Utilização de inteligência artificial (redes neurais artificiais) no gerenciamento da produção de frangos de corte. 127f. Porto Alegre, RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Rocha D.T. 2012 Utilização de redes neurais artificiais para a classificação da resistência a antimicrobianos e sua relação com a presença de 38 genes associados à virulência isolados de amostras de Escherichia coli provenientes de frangos de corte. 49f, Porto Alegre, RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Salle C.T.P. 2018. Veterinarians are paid to make decisions. Approaches in Poultry, Dairy & Veterinary Sciences. 3(5):1-2.

Salle C.T.P., Guahyba A.S., Wald V.B., Silva A.B., Salle F.O. & Nascimento V.P. 2003. Use of artificial neural networks to estimate production parameters of broiler breeders in the breeding phase. British Poultry Science. 44(2):211-217.

Salle C.T.P., Spohr A., Furian T.Q., Borges K.A., Rocha D.T., Moraes H.L. & Nascimento V.P. 2018 Inteligência Artificial: O Futuro da Produção Avícola. Avicultura Industrial. 7:38-42.

Salle F.O. 2005. Utilização de inteligência artificial (redes neurais artificiais) no gerenciamento do incubatório de uma empresa avícola do sul do Brasil. 82f. Porto Alegre, RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Savegnago R.P., Nunes B.N., Caetano S.L., Ferraudo A.S., Schmidt G.S., Ledur M.C. & Munari D.P. 2011. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poultry Science. 90(3):705-711.

Spohr A. 2011. Gerenciamento através de redes neurais artificiais das atividades de produção de reprodutoras pesadas e de frangos de corte, de um incubatório e de um abatedouro avícola. 61f. Porto Alegre, RS. Dissertação (Mestrado em Ciências Veterinárias) - Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul.

Stefanova M. 2017. Precision poultry farming: monitor and collaborate on health and welfare of laying hens through online zootechnical diary. In: Proceedings of the 8th International Conference on Information & Communication Technologies in Agriculture, Food and Environment (HAICTA) (Chania, Gracee), p.39-45.

Valentim J.K, Lima H.J.D, Bittencourt T.N, Barros F.K.Q., Braga J.D.C. & Antunes, H.C.F. 2019. Performance and welfare of different genetic groups of laying hen. Acta Scientiarum Animal Sciences. 41:1-8.

Vanneschi L. & Castelli M. 2019. Multilayer Perceptrons. In: Encyclopedia of Bioinformatics and Computational Biology. Amsterdam: Elsevier, pp. 612-620.

Wasserman P.D. & Schwartz T. 1988 Neural Networks. II. What are they and why is everybody so interested in them now? IEEE Intelligent Systems and Their Applications, 3(1):10-15.

Published

2020-01-01

How to Cite

de Almeida, L. G. B., de Oliveira, Éder B., Furian, T. Q., Borges, K. A., Tonini da Rocha, D., Salle, C. T. P., & Moraes, H. L. de S. (2020). Artificial Neural Networks on Eggs Production Data Management. Acta Scientiae Veterinariae, 48. https://doi.org/10.22456/1679-9216.101462

Issue

Section

Articles

Most read articles by the same author(s)