Virulence Genes and Resistance Profile of Escherichia coli Isolated in Meat Meal Samples
DOI:
https://doi.org/10.22456/1679-9216.114233Abstract
Background: Feed is the main route of transmission of pathogenic microorganisms and is responsible for a large part of the cost of poultry production, so the inclusion of alternative foods in diets for monogastrics has been a constant. Among alternative foods most used in modern poultry farming are animal meal, however, when contaminated they constitute a route of transmission of several pathogenic agents, including Escherichia coli. In addition, there is a zoonotic potential, as poultry products are intended for human consumption. The objective of this research was to detect virulence genes, as well as to evaluate the resistance profile of Escherichia coli isolates from meat meal samples.
Materials, Methods & Results: A total of 40 Escherichia coli isolates were analyzed and the virulence genes surveyed iss, ompT, hlyF, iutA, and fimA identified by Polymerase Chain Reaction (PCR). The antimicrobial agents tested were: amoxycillin (30 μg), ceftiofur (30 μg), ciprofloxacin (5 μg), doxycycline (30 μg), florfenicol (30 μg), fosfomycin (200 μg), gentamicin (10 μg), norfloxacin (10 μg) and oxacillin (1 μg). It was possible to observe the occurrence of the iss resistance gene in 100% of Escherichia coli isolates, followed by hlyF (85%), fimA (75%), ompT (17.5%) and iutA (5%). Regarding the simultaneous detection for the genes, a greater association between the genes iss, hlyF and fimA (60%) was verified. All isolates showed resistance to oxacillin (100%), followed by doxycycline (25%), amoxicillin (22.5%), norfloxacin (17.5%), ceftiofur (15%), florfenicol (12.5%), fosfomycin (12.5%), ciprofloxacin (10%) and gentamycin (2.5%). In this study, a variation of the multiple antimicrobial resistance index (IRMA) was observed between 0.22 and 0.77.
Discussion: The indiscriminate use of of antimicrobials as performance enhancers in production animals, may have contributed to the increase in antimicrobial resistance, with the occurrence of multiresistant Escherichia coli carrying virulence genes. Virulence genes present in Escherichia coli isolates are studied to understand the degree of influence they exert in the establishment of the disease, one of the most researched genes is the iss gene, involved in the processes that promote serum resistance. In this study, iss (100%) was present in all the isolates analyzed, although it is not the only mechanism used by these bacteria to reach internal organs and trigger an infection, this gene encodes an important mechanism associated with high levels of virulence. The second highest prevalence found was of the hlyF gene (85%), the high prevalence of hlyF suggests virulence potential, involved with the production of hemolysin and improvement of outer membrane vesicles associated with the release of toxins. The fimA gene (75%) was detected in a slightly lower percentage when compared to iss and hlyF. With the second lowest prevalence, the ompT gene (17.5%), is involved in a process that includes the proteolytic degradation of antimicrobial peptides and with the lowest prevalence the iutA gene (5%). Certain combinations of virulence genes make the strains easier to survive, adhere to, colonize and even the ability to develop septicemic conditions. Multiresistant E. coli strains, is a fact of concern for both animal and human health, since the presence of multiresistant strains, originating from poultry, can be transmitted from chicken carcasses. In this sense, the importance of sanitary control of the inputs used in animal feed is emphasized, as well as the prudent use of antimicrobials in animal production, with a view to producing a safe food, minimizing not only the economic losses, but also the risks to human health.
Keywords: antimicrobial, bacterial resistance, colibacillosis, poultry.
Downloads
References
Abreu D.L.C., Franco R.M., Nascimento E.R., Pereira V.L.A., Alves F.M.X. & Almeida J.F. 2010. Perfil de sensibilidade antimicrobiana e detecção do gene iss pela reação em cadeia da polimerase e tipificação de Escherichia coli patogênica em codornas de corte sob inspeção sanitária. Pesquisa Veterinária Brasileira. 30(5): 406-410.
Almeida M.A.S., Leonídio A.R.A. & Andrade M.A. 2016. Associação dos quadros anatomopatológicos de colibacilose aviaria com genes de virulência de Escherichia coli. Veterinária em Foco. 13(2): 113-131.
Aslam M., Toufeer M., Bravo C.N., Lai V., Rempel H., Manges A. & Diarra M.S. 2014. Characterization of Extraintestinal Pathogenic Escherichia coli isolated from retail poultry meats from Alberta, Canada. International Journal of Food Microbiology. 2(177): 49-56.
Barros M.R. 2011. Epidemiologia molecular das infecções por Mycoplasma spp., Escherichia coli e Staphylococcus spp. em frangos de corte e poedeiras comerciais no estado de Pernambuco. 86f. Recife, PE. Tese (Doutorado em Ciência Veterinária) - Programa de Pós-Graduação em Ciência Veterinária, Universidade Federal Rural de Pernambuco.
Barros M.R., Silveira W.D., Araújo J.M., Costa E.P., Oliveira A.A.F., Santos A.P.S.F., Silva V.A.S. & Mota R.M. 2012. Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco. Pesquisa Veterinária Brasileira. 32(5): 405-410.
Bergeron C.R, Prussing C., Boerlin P., Daignault D., Dutil L., Reid-Smith R.J., Zhanel G.G. & Manges A.R. 2012. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerging Infectious Diseases. 18(3): 415-421.
Carli S., Ikuta N., Lehmann F.K.M., Silveira V.P., Predebon G.M., Fonseca A.S.K. & Lunge V.R. 2015. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil. Poultry Science. 94(11): 2635-2640.
Carter G.R. 1988. Fontes e transmissão de agentes infecciosos. In: Carter G.R. (Ed). Fundamentos de Bacteriologia e Micologia Veterinária. São Paulo: Roca, pp.65-70.
Carvalho D., Tejkowski T.M., Jaenisch F.R.F., Carvalho D., Tejkowski T.M., Jaenisch F.R.F., Rodrigues R.O., Brito K.C.T. & Brito B.G. 2017. Susceptibilidade de duas linhagens comerciais de frango de corte no desenvolvimento de dermatite necrótica e possível relação dos genes iss e iutA de Escherichia coli com a reprodução experimental da doença. Pesquisa Veterinária Brasileira. 37(12): 1395-1400.
Chantziaras I., Boyen F., Callens B. & Dewulf J. 2014. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. Journal of Antimicrobial Chemotherapy. 69(3): 827-834.
Clinical and Laboratory Standards Institute (CLSI). 2017. Performance Standards for Antimicrobial Susceptibility Testing. Disponível em:<http://www.facm.ucl.ac. be/intranet/CLSI/ CLSI-2017-M100-S27.pdf>. [Accessed online in October 2017].
Costa A.R.F., Lima K.V.B., Sousa C.O. & Loureiro E.C.B. 2010. Desenvolvimento de PCR multiplex para detecção e diferenciação de categorias de Escherichia coli diarreiogênicas. Revista Pan-Amazônica de Saúde. 1(2): 77-84.
Danzeisen J.L., Wannemuehler Y., Nolan L.K. & Johnson T.J. 2013. Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat and human extraintestinal infection. Avian Disease. 57(1): 104-108.
Dissanayake D.R., Octavia S. & Lan R. 2014. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Veterinary Microbiology. 168(2-4): 403-412.
Gao Q., Jia X., Wang X., Xiong L., Gao S. & Liu X. 2015. The avian pathogenic Escherichia coli O2 strain E058 carrying the defined aerobactin-defective iucD or iucDiutA mutation is less virulent in the chicken. Infection, Genetics and Evolution. 30: 267-277.
Hussein A.H.M., Ghanem I.A.I., Eid A.A.M., Ali M.A., Sherwood J.S., Li G., Nolan L.K. & Logue C.M. 2013. Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in egypt. Avian Disease. 57(3): 602-611.
Jeong Y.W., Kim T.E., Kim J.H. & Kwon H.J. 2012. Pathotyping avian pathogenic Escherichia coli strains in Korea. Journal of Veterinary Science. 13(2): 145-152.
Johnson T.J., Siek K.E., Johnson S.J. & Nolan L.K. 2006. DNA Sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. Journal of Bacteriology. 188(2): 745-758.
Johnson T.J., Wannemuehler Y.M. & Nolan L.K. 2008. Evolution of the iss gene in Escherichia coli. Applied and Environmental Microbiology. 74(8): 2360-2369.
Karami N., Wold A.E. & Adlerberth I. 2017. Antibiotic resistance is linked to carriage of papC and iutA virulence genes and phylogenetic group D background in commensal and uropathogenic Escherichia coli from infants and young children. European Journal of Clinical Microbiology & Infectious Diseases. 36(4): 721-729.
Korb A., Nazareno E.R., Costa L.D. & Nogueira K.S. 2015. Tipagem molecular e resistência aos antimicrobianos em isolados de Escherichia coli de frangos de corte e de tratadores na Região Metropolitana de Curitiba, Paraná. Pesquisa Veterinária Brasileira. 35(3): 258-264.
Krumperman P.H. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology. 46(1): 165-170.
Maluta R.P., Logue C.M., Casas M.R., Meng T., Guastalli E.A.L., Rojas T.C.G., Montelli A.C., Sadatsune T., Ramos M.C., Nolan L.K. & Silveira W.D. 2014. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. Plos One. 9(8): e105016.
Marc D. & Dho-Moulin M. 1996. Analysis of the fim cluster of an avian 02 strain of Escherichia coli: serogroup-specific sites within fimA and nucleotide sequence of firnl. Journal of Medical Microbiology. 44(6): 444-452.
Maturana V.G., Pace F., Carlos C., Pires M.M., Campos T.A., Nakazato G., Stheling E.G., Catherine M., Logue C.M., Nolan L.K. & Silveira W.D. 2011. Subpathotupes of avian pathogenic Escherichia coli (APEC) exist as defined by their syndromes and virulence traits. The Open Microbiology Journal. 5(1): 55-64.
Mbanga J. & Nyararai Y.O. 2015. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. Onderstepoort Journal of Veterinary Research. 82(1): e1-e8.
Mellata M. 2013. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease. 10(11): 916-932.
Melo D.B., Menezes A.P.O., Reis J.N. & Guimarães A.G. 2015. Antimicrobial resistance and genetic diversity of Escherichia coli isolated from humans and foods. Brazilian Journal of Microbiology. 46(4): 1165-1170.
Mo S.S., Sunde M., Ilag H.K., Langsrud S. & Heir E. 2017. Transfer potential of plasmids conferring extended-spectrum-cephalosporin resistance in Escherichia coli from poultry. Applied and Environmental Microbiology. 83(12): 1-11.
Murase K., Martin P., Porcheron G., Houle S., Helloin E., Pénary M., Nougayrède J., Dozois C.M., Hayashi T. & Oswald E. 2016. HlyF produced by extraintestinal pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. The Journal of Infectious Diseases. 213(5): 856-865.
Oliveira E.S., Cardozo M.V., Montassier M.F.S., Borzi M.M. & Ávila F.A. 2015. Classificação filogenética e caracterização genotípica dos isolados de Escherichia coli patogênica aviária (APEC) provenientes de galinhas caipiras. In: II Simpósio Internacional de Medicina Veterinária Preventiva (Jaboticabal, Brazil). Ars Veterinaria Journal. 31(2): 32.
Rodriguez-Siek K.E., Giddings C.W., Doetkott C.T. & Johnson J. 2005. Characterizing the APEC pathotype. Veterinary Research. 36(2): 241-256.
Rouger A., Tresse O. & Zagorec M. 2017. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 5(3): 50.
Santos M.M., Alcantara A.C.M., Perecmanis S., Campos A. & Santana A.P. 2014. Antimicrobial resistance of bacterial strains isolated from avian cellulitis. Revista Brasileira de Ciência Avícola. 16(1): 13-18.
Thomassin J.L., Brannona J.R., Gibbs B.F., Gruenheid S. & Moua H.L. 2012. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infection and Immunity. 80(2): 483-492.
Zibandeh S., Sharifiyazdi H., Asasi K. & Abdi-Hachesoo B. 2016. Investigation of tetracycline resistance genes in Escherichia coli isolates from broiler chickens during a rearing period in Iran. Veterinarski Arhiv. 86(4): 565-572.
Published
How to Cite
Issue
Section
License
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino