Similarity in qPCR Assay Parameters Validates the Reliability of Two Microtube Brands
DOI:
https://doi.org/10.22456/1679-9216.147756Keywords:
qPCR, microtubes, performance, molecular assay, tick, cost-efficiencyAbstract
Background: Quantitative PCR (qPCR) is a powerful molecular biology technique widely used for gene transcription analysis, pathogen detection, food and environmental contamination monitoring, due to its high sensitivity, specificity and accuracy when compared to immunological and microbiological assays. It enables real-time monitoring of DNA amplification playing a critical role in medical diagnostics, vaccine development and cancer research. This makes qPCR an essential technique in agriculture, forensics and environmental monitoring, solidifying its position as one of the most versatile tools in modern science. However, the cost of this molecular method remains a significant limitation, as expenses related to equipment and consumables (such as pipette tips, enzymes and reaction tubes) make the technique relatively expensive, particularly for high-throughput applications or laboratories with limited budgets.
Materials, Methods & Results: The experiments were conducted using 2 very well characterized constitutive genes from Rhipicephalus microplus, 40s ribosomal protein and cyclophilin A, allowing a consistent and reliable analysis of qPCR assay performance. These genes were selected due to their stable transcription across different biological conditions, ensuring minimal variability in amplification efficiency. Statistical analysis was performed using Mann-Whitney test, based on the mean and standard deviation of the Ct values, with a significance threshold set at P < 0.01. No significant difference (P = 0.99) was observed between the microtubes evaluated in this assay, indicating that, despite being from different manufacturers and price categories, the tubes presented comparable performance, in terms of amplification efficiency and reproducibility. This consistency was observed even when testing different reference genes and biological samples, further validating the robustness of the findings. Notable, the most cost-effective microtube, evaluated in this work, offered over 70% savings compared to the alternative, making it a highly attractive option for laboratories seeking to reduce expenses without sacrificing data quality.
Discussion: Various alternatives have been explored to reduce the cost of the qPCR assay while maintaining reliability. These include the use of more economical thermal cyclers, minimizing consumable wastes, adopting portable qPCR system, simplifying nucleic acid extraction protocols, and optimizing reaction conditions to reduce the impact of nhibitors. Among consumables, approaches such as the reuse of pipette tips (where feasible) and reducing the volume of each reagent in the reactions have been reported. However, studies systematically evaluating the performance of different microtube brands in qPCR applications remain scarce. Here, 2 microtubes with identical physical specifications, but differing in brands and values, were tested in qPCR assays using constitutive tick genes. The results demonstrated no significant differences in reaction efficiency or reproducibility between the tubes, confirming that cost-saving alternatives can be implemented without affecting experimental outcomes. Therefore, the lower-cost microtube represents a viable and practical alternative to reduce expenses in qPCR assays while maintaining high performance standards. Future studies could expand this evaluation to include additional brands, tube materials, and reaction conditions to further validate these findings and optimize cost-efficiency in molecular biology workflows.
Keywords: qPCR; microtubes; performance, molecular assay, tick, cost-efficiency.
Downloads
References
Beall M.J., Buch J., Clark G., Estrada M., Rakitin A., Hamman N.T., Frenden M.K., Jefferson E.P., Amirian E.S. & Levy J.K. 2021. Feline leukemia virus p27 antigen concentration and proviral DNA load are associated with survival in naturally infected cats. Viruses. 13(2): 302. DOI: 10.3390/v13020302 DOI: https://doi.org/10.3390/v13020302
Boobalan J., Torti A., Dinesha T.R., Solomon S.S., Balakrishnan P. & Saravanan S. 2017. Cost-effective HIV-1 virological monitoring in resource-limited settings using a modified commercially available qPCR RNA assay. Journal of Virological Methods. 248: 71-76. DOI: 10.1016/j.jviromet.2017.05.007 DOI: https://doi.org/10.1016/j.jviromet.2017.05.007
Bryant J.A., Longmire C., Sridhar S., Janousek S., Kellinger M. & Wright R.C. 2024. TidyTron: Reducing lab waste using validated wash-and-reuse protocols for common plasticware in Opentrons OT-2 lab robots. SLAS Technology. 29(2): 100107. DOI: 10.1016/j.slast.2023.08.007 DOI: https://doi.org/10.1016/j.slast.2023.08.007
Daude M.M., Barros E.N., Santos G.C.A. & Barreto H.G. 2023. Research Article Dengue virus RNA quantification through PCR: what is the best cost-effective approach? Genetics and Molecular Research. 22(1). DOI: 10.4238/gmr19075 DOI: https://doi.org/10.4238/gmr19075
De Mello L.S., Diesel L.P., De Oliveira Santana W., Ikuta N., Fonseca A.S.K., Kipper D., Redaelli R., Bueno Pereira V.R.Z., Streck A.F. & Lunge V.R. 2025. Feline immunodeficiency virus (FIV): Prevalence, risk factors, and clinical findings in domestic cats (Felis catus) from southern Brazil. Comparative Immunology, Microbiology and Infectious Diseases. 116: 102285. DOI: 10.1016/j.cimid.2024.102285 DOI: https://doi.org/10.1016/j.cimid.2024.102285
Diesel L.P., De Mello L.S., De Oliveira Santana W., Ikuta N., Fonseca A.S.K., Kipper D., Redaelli R., Pereira V.R.Z.B., Streck A.F. & Lunge V.R. 2024. Epidemiological insights into feline leukemia virus infections in an urban cat (Felis catus) population from Brazil. Animals. 14(7): 1051. DOI: 10.3390/ani14071051 DOI: https://doi.org/10.3390/ani14071051
Dorlass E.G., Monteiro C.O., Viana A.O., Soares C.P., Machado R.R.G., Thomazelli L.M., Araujo D.B., Leal F.B., Candido E.D., Telezynski B.L., Valério C.A., Chalup V.N., Mello R., Almeida F.J., Aguiar A.S., Barrientos A.C.M., Sucupira C., De Paulis M., Sáfadi M.A.P., Silva D.G.B.P., Sodré J.J.M., Soledade M.P., Matos S.F., Ferreira S.R., Pinez C.M.N., Buonafine C.P., Pieroni L.N.F., Malta F.M., Santana R.A.F., Souza E.C., Fock R.A., Pinho J.R.R., Ferreira L.C.S., Botosso V.F., Durigon E.L. & Oliveira D.B.L. 2020. Lower cost alternatives for molecular diagnosis of COVID-19: conventional RT-PCR and SYBR green-based RT-qPCR. Brazilian Journal of Microbiology. 51(3): 1117-–1123. DOI: 10.1007/s42770-020-00347-5 DOI: https://doi.org/10.1007/s42770-020-00347-5
El-Ashram S., Al Nasr I. & Suo X. 2016. Nucleic acid protocols: Extraction and optimization. Biotechnology Reports. 12: 33-39. DOI: 10.1016/j.btre.2016.10.001 DOI: https://doi.org/10.1016/j.btre.2016.10.001
Fuchs Wightman F., Godoy Herz M.A., Muñoz J.C., Stigliano J.N., Bragado L., Moreno N.N., Palavecino M., Servi L., Cabrerizo G., Clemente J., Avaro M., Pontoriero A., Benedetti E., Baumeister E., Rudolf F., Remes Lenicov F., Garcia C., Buggiano V., Kornblihtt A.R., Srebrow A., De La Mata M., Muñoz M.J., Schor I.E. & Petrillo E. 2021. A DNA intercalating dye-based RT-qPCR alternative to diagnose SARS-CoV-2. RNA Biology. 18(12): 2218-2225. DOI:10.1080/15476286.2021.1926648 DOI: https://doi.org/10.1080/15476286.2021.1926648
Gallina L., Facile V., Roda N., Sabetti M.C., Terrusi A., Urbani L., Magliocca M., Vasylyeva K., Dondi F., Balboni A. & Battilani M. 2024. Molecular investigation and genetic characterization of feline leukemia virus (FeLV) in cats referred to a veterinary teaching hospital in Northern Italy. Veterinary Research Communications. 48(4): 2683-2689. DOI: 10.1007/s11259-024-10380-6 DOI: https://doi.org/10.1007/s11259-024-10380-6
Giglioti R., De Oliveira H.N., Okino C.H. & De Sena Oliveira M.C. 2018. qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae. Experimental and Applied Acarology. 75(2): 235-240. DOI: 10.1007/s10493-018-0260-0 DOI: https://doi.org/10.1007/s10493-018-0260-0
He L., Sang B. & Wu W. 2020. Battery-powered portable rotary real-time fluorescent qPCR with low energy consumption, low cost, and high throughput. Biosensors. 10(5): 49. DOI: 10.3390/bios10050049 DOI: https://doi.org/10.3390/bios10050049
Kim T.K., Waldman J., Ibanez-Carrasco F., Tirloni L., Waltero C., Calixo C., Braz G.R., Mulenga A., Da Silva Vaz Junior I. & Logullo C. 2023. Stable internal reference genes for quantitative RT-PCR analyses in Rhipicephalus microplus during embryogenesis. Ticks and Tick-Borne Diseases. 14(6): 102251. DOI: 10.1016/j.ttbdis.2023.102251 DOI: https://doi.org/10.1016/j.ttbdis.2023.102251
Lau D.C.-W., Power R.I. & Šlapeta J. 2024. Exploring multiplex qPCR as a diagnostic tool for detecting microfilarial DNA in dogs infected with Dirofilaria immitis: A comparative analysis with the modified Knott’s test. Veterinary Parasitology. 325: 110097. DOI: 10.1016/j.vetpar.2023.110097 DOI: https://doi.org/10.1016/j.vetpar.2023.110097
Martínez N., Martín M.C., Herrero A., Fernández M., Alvarez M.A. & Ladero V. 2011. qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science & Technology. 22(7): 367-376. DOI: 10.1016/j.tifs.2011.04.004 DOI: https://doi.org/10.1016/j.tifs.2011.04.004
Meli M.L., Berger A., Willi B., Spiri A.M., Riond B. & Hofmann-Lehmann R. 2018. Molecular detection of feline calicivirus in clinical samples: A study comparing its detection by RT-qPCR directly from swabs and after virus isolation. Journal of Virological Methods. 251: 54-60. DOI: 10.1016/j.jviromet.2017.10.001 DOI: https://doi.org/10.1016/j.jviromet.2017.10.001
Mendoza-Gallegos R.A., Rios A. & Garcia-Cordero J.L. 2018. An affordable and portable thermocycler for real-time PCR made of 3D-printed parts and off-the-shelf electronics. Analytical Chemistry. 90(9): 5563-5568. DOI: 10.1021/acs.analchem.7b04843 DOI: https://doi.org/10.1021/acs.analchem.7b04843
Mollet K.A., Tembrock L.R., Zink F.A., Timm A.E. & Gilligan T.M. 2024. An improved bulk DNA extraction method for detection of Helicoverpa armigera (Lepidoptera: Noctuidae) using real-time PCR. Insects. 15(8): 585. DOI: 10.3390/insects15080585 DOI: https://doi.org/10.3390/insects15080585
Moriello K.A. & Leutenegger C.M. 2018. Use of a commercial qPCR assay in 52 high risk shelter cats for disease identification of dermatophytosis and mycological cure. Veterinary Dermatology. 29(1): 66. DOI: 10.1111/vde.12485 DOI: https://doi.org/10.1111/vde.12485
Oliveira M., Watanabe A., Cesar D., Candido J., Lima N., Moreira O. & Chellini P. 2022. Testes diagnósticos para o SARS-COV-2: uma reflexão crítica. Química Nova. 45(6). DOI: 10.21577/0100-4042.20170895 DOI: https://doi.org/10.21577/0100-4042.20170895
Rampazzo R.D.C.P., Solcà M.D.S., Santos L.C.S., Pereira L.D.N., Guedes J.C.O., Veras P.S.T., Fraga D.B.M., Krieger M.A. & Costa A.D.T. 2017. A ready-to-use duplex qPCR to detect Leishmania infantum DNA in naturally infected dogs. Veterinary Parasitology. 246: 100-107. DOI: 10.1016/j.vetpar.2017.09.009 DOI: https://doi.org/10.1016/j.vetpar.2017.09.009
Reck J., Berger M., Terra R.M.S., Marks F.S., da Silva Vaz I., Guimarães J.A. & Termignoni C. 2009. Systemic alterations of bovine hemostasis due to Rhipicephalus (Boophilus) microplus infestation. Research in Veterinary Science. 86(1): 56-62. DOI: 10.1016/j.rvsc.2008.05.007 DOI: https://doi.org/10.1016/j.rvsc.2008.05.007
Sabadin G.A., Salomon T.B., Leite M.S., Benfato M.S., Oliveira P.L. & Da Silva Vaz I. 2021. An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitology International. 81: 102274. DOI: 10.1016/j.parint.2020.102274 DOI: https://doi.org/10.1016/j.parint.2020.102274
Sazed S.A., Kibria M.G. & Alam M.S. 2021. An optimized real-time qPCR method for the effective detection of human malaria infections. Diagnostics. 11(5): 736. DOI: 10.3390/diagnostics11050736 DOI: https://doi.org/10.3390/diagnostics11050736
Sun K., Fan G., Dong H., Fan Y., Xie Y., Liang K. & Zhang Y. 2024. Water-cooling-based and low-cost qPCR device for rapid nucleic acid analysis. Sensors and Actuators A: Physical. 375: 115496. DOI: 10.1016/j.sna.2024.115496 DOI: https://doi.org/10.1016/j.sna.2024.115496
Sun P., Guo S., Sun J., Tan L., Lu C. & Ma Z. 2019. Advances in in-silico B-cell epitope prediction. Current Topics in Medicinal Chemistry. 19(2): 105-115. DOI: 10.2174/1568026619666181130111827 DOI: https://doi.org/10.2174/1568026619666181130111827
Suruzzaman Md., Cao T., Lu J., Wang Y., Su M. & Yang M. 2022. Evaluation of the MIB-producing potential based on real-time qPCR in drinking water reservoirs. Environmental Research. 204: 112308. DOI: 10.1016/j.envres.2021.112308 DOI: https://doi.org/10.1016/j.envres.2021.112308
Toohey-Kurth K.L., Mulrooney D.M., Hinkley S., Lea Killian M., Pedersen J.C., Bounpheng M.A., Pogranichniy R., Bolin S., Maes R., Tallmadge R.L., Goodman L.B. & Crossley B.M. 2020. Best practices for performance of real-time PCR assays in veterinary diagnostic laboratories. Journal of Veterinary Diagnostic Investigation. 32(6): 815-825. DOI: 10.1177/1040638720962076 DOI: https://doi.org/10.1177/1040638720962076
Tozato C.D.C., Zadra V.F., Basso C.R. & Araújo Junior J.P. 2016. Canine distemper virus detection by different methods of one-step RT-qPCR. Ciência Rural. 46(9): 1601-1606. DOI: 10.1590/0103-8478cr20150932 DOI: https://doi.org/10.1590/0103-8478cr20150932
Waldman J., Souza M.N., Fonseca A.S.K., Ikuta N. & Lunge V.R. 2020. Direct detection of Salmonella from poultry samples by DNA isothermal amplification. British Poultry Science. 61(6): 653-659. DOI: 10.1080/00071668.2020.1808188 DOI: https://doi.org/10.1080/00071668.2020.1808188
Wang J., Li Y., Chen J., Hua D., Li Y., Deng H., Li Y., Liang Z. & Huang J. 2018. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene. Brazilian Journal of Microbiology. 49(2): 320-328. DOI: 10.1016/j.bjm.2017.09.001 DOI: https://doi.org/10.1016/j.bjm.2017.09.001
Xavier M.A., Brust F.R., Waldman J., Macedo A.J., Juliano M.A., da Silva Vaz I. & Termignoni C. 2021. Interfering with cholesterol metabolism impairs tick embryo development and turns eggs susceptible to bacterial colonization. Ticks and Tick-Borne Diseases. 12(6): 101790. DOI: 10.1016/j.ttbdis.2021.101790 DOI: https://doi.org/10.1016/j.ttbdis.2021.101790
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lucas dos Santos Avila, Itabajara da Silva Vaz Júnior, Jéssica Waldman

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino