Early Maturation of Corpus Luteum in Rabbits - Effect of Sildenafil Citrate on Luteolytic Capacity in the Early Luteal Period
DOI:
https://doi.org/10.22456/1679-9216.133456Keywords:
sildenafil citrate, PGF2 alpha, corpus luteum, early luteal stage, rabbitAbstract
Background: Prostaglandin F2 alpha (PGF2α) binds to the specific receptor (PTGFR) on the corpus luteum (CL) in mammals, inducing regression of the CL structure (luteolysis) and initiating a new cycle. While PGF2α is effective only on mature CL, the immature CL structure (early luteal phase) resists PGF2α. In this study, sildenafil citrate, which is used to increase blood flow in the genital organs for treating specific pregnancy issues in women, was administered during the early luteal phase in a rabbit model to test the hypothesis of enhancing blood flow to the CL, thereby promoting earlier maturation and enabling a response to PGF2α.
Materials, Methods & Results: The study was conducted in 2 sub-studies: clinical and molecular. A large number of rabbits were initially included in the sub-studies to ensure a sufficient number of pseudo-pregnant rabbits. Ovulation in rabbits was induced with buserelin acetate and was considered as day 0 of the study. The sub-studies were continued with rabbits whose pseudo-pregnancies were confirmed according to progesterone (P4) results. As a result, the studies were continued with a total of 41 pseudo-pregnant New Zealand female rabbits, 21 of which were included in the clinical sub-study and 20 in the molecular sub-study. In both sub-studies, on day 3 of the luteal period, rabbits in the treatment group received 5 mg/kg sildenafil citrate and all rabbits received a single dose of exogenous PGF2α on day 4 to induce luteolysis. In the clinical sub-study, echotexture and intraovarian blood flow changes in the ovaries were determined by ultrasonography (USG) examination. In the molecular sub-study, the expression changes of Hypoxia Inducible Factor 1 Alpha (HIF1A) and Vascular Endothelial Growth Factor (VEGF) related to angiogenesis, Steroidogenic Acute Regulatory Protein (StAR) related to P4 metabolism, Prostaglandin-Endoperoxide Synthase 2 (PTGS2) related to prostaglandin (PG) mechanism and 15-Hydroxyprostaglandin Dehydrogenase (HPGD) genes at mRNA level were determined using Real Time Polymerase Chain Reaction (RT-PCR) in CL tissues obtained with ovariohysterectomy (OVH) at 1 and 12 h after PGF2α injection. In addition, blood samples were collected for determine P4 levels from all rabbits. In the clinical sub-study; there was no difference between the groups in mean gray values (MGV), whereas there was a significant decrease in both pulsatile index (PI) and resistance index (RI) values at 40 min after PGF2α injection (P < 0.05). In the molecular sub-study, it was determined that sildenafil citrate had no significant effect (P > 0.05) on the expression levels 1 and 12 h after PGF2α injection. According to the results of the molecular sub-study, no significant effect of sildenafil citrate on the mRNA expression levels in the investigated genes was detected (P > 0.05). However, within each group, differences were found according to OVH time after PGF2α injection. It was observed that PTGS2 and HPGD mRNA expressions decreased at the 12th h compared to the 1st h, while HIF1A expression increased (P < 0.05).
Discussion: According to the results obtained from clinical and molecular sub-studies, it was determined that a single dose of sildenafil citrate (5 mg/kg) applied on the 3rd day of the luteal period did not contribute to the maturation process of the CL, did not increase blood flow, and was insufficient to break the resistance of the CL against PGF2α applied on the 4th day of the luteal period. However, a significant decrease in the PI value at the 40th min after PGF2α injection suggests that sildenafil citrate has a supportive effect, and that this decrease is also seen in the RI value, suggesting that its effect is insufficient against the vasoconstrictive effect of PGF2α.
Keywords: sildenafil citrate, PGF2 alpha, corpus luteum, early luteal stage, rabbit.
Downloads
References
Acosta T.J., Hayashi K.G., Matsui M. & Miyamoto A. 2005. Changes in follicular vascularity during the first follicular wave in lactating cows. Journal of Reproduction and Development. 51(2): 273-280. DOI:10.1262/jrd.16092. DOI: https://doi.org/10.1262/jrd.16092
Akkuş T. & Erdoğan G. 2019. Ultrasonographic evaluation of feto-placental tissues at different intrauterine locations in rabbit. Theriogenology. 138: 16-23. DOI:10.1016/j.theriogenology.2019.06.042. DOI: https://doi.org/10.1016/j.theriogenology.2019.06.042
Atli M.O., Bender R.W., Mehta V., Bastos M.R., Luo W., Vezina C.M. & Wiltbank M.C. 2012. Patterns of Gene Expression in the Bovine Corpus luteum Following Repeated Intrauterine Infusions of Low Doses of Prostaglandin f2alpha1. Biology of Reproduction. 86(4): 1-13. DOI:10.1095/biolreprod.111.094870. DOI: https://doi.org/10.1095/biolreprod.111.094870
Berisha B., Schams D., Sinowatz F., Rodler D. & Pfaffl M.W. 2020. Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis. Reproduction in Domestic Animals. 55(11): 1573-1584. DOI:10.1111/rda.13812. DOI: https://doi.org/10.1111/rda.13812
Bruce N.W. & Hillier K. 1974. The effect of prostaglandin F2α on ovarian blood flow and corpora lutea regression in the rabbit. Nature. 249(5453): 176-177. DOI:10.1038/249176a0. DOI: https://doi.org/10.1038/249176a0
Caillol M., Dauphin-Villemant C. & Martinet L. 1983. Oestrous behaviour and circulating progesterone and oestrogen levels during pseudopregnancy in the domestic rabbit. Journal of Reproduction and Fertility. 69(1): 179-186. DOI:10.1530/jrf.0.0690179. DOI: https://doi.org/10.1530/jrf.0.0690179
Cauli O., Herraiz S., Pellicer B., Pellicer A. & Felipo V. 2010. Treatment with sildenafil prevents impairment of learning in rats born to pre-eclamptic mothers. Neuroscience. 171(2): 506-512. DOI:10.1016/j.neuroscience.2010.08.065. DOI: https://doi.org/10.1016/j.neuroscience.2010.08.065
Chung P.H., Sandhoff T.W. & McLean M.P. 1998. Hormone and prostaglandin F2α regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in human corpora lutea. Endocrine. 8(2): 153-160. DOI:10.1385/ENDO:8:2:153. DOI: https://doi.org/10.1385/ENDO:8:2:153
Dal Bosco A., Rebollar P.G., Boiti C., Zerani M. & Castellini C. 2011. Ovulation induction in rabbit does: Current knowledge and perspectives. Animal Reproduction Science. 129(3-4): 106-117. DOI:10.1016/j.anireprosci.2011.11.007. DOI: https://doi.org/10.1016/j.anireprosci.2011.11.007
Davies K.L., Bartlewski P.M., Pierson R.A. & Rawlings N.C. 2006. Computer assisted image analyses of corpora lutea in relation to peripheral concentrations of progesterone: A comparison between breeds of sheep with different ovulation rates. Animal Reproduction Science. 96(1-2): 165-175. DOI:10.1016/j.anireprosci.2005.12.003. DOI: https://doi.org/10.1016/j.anireprosci.2005.12.003
Diaz F.J., Crenshaw T.D. & Wiltbank M.C. 2000. Prostaglandin F(2α) induces distinct physiological responses in porcine corpora lutea after acquisition of luteolytic capacity. Biology of Reproduction. 63(5): 1504-1512. DOI:10.1095/biolreprod63.5.1504. DOI: https://doi.org/10.1095/biolreprod63.5.1504
Erdogan G., Kucuk N., Kanca H. & Aksoy M. 2017. In vivo and in vitro assessment of ovarian echotexture through computer assisted real time ultrasonography in bitches. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 64(3): 171-176. DOI:10.1501/vetfak_0000002795. DOI: https://doi.org/10.1501/Vetfak_0000002795
Erdogan G., Kılıc N., Beceriklisoy H.B., Ucar E.H., Akkus T., Peker C. & Kibar B. 2018. The effects of preanesthetic Sildenafil citrate usage on feto‐maternal circulation in pregnant rabbits, Poster Presentations. Reproduction in Domestic Animals. 53: 130. DOI:10.1111/rda.13272. DOI: https://doi.org/10.1111/rda.13272
Folkman J. & D’Amore P.A. 1996. Blood vessel formation: What is its molecular basis? Cell. 87(7): 1153-1155. DOI:10.1016/S0092-8674(00)81810-3. DOI: https://doi.org/10.1016/S0092-8674(00)81810-3
Goswami S.K., Vishwanath M., Gangadarappa S., Razdan R. & Inamdar M.N. 2014. Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction. Pharmacognosy Magazine. 10(39): s581-s587. DOI:10.4103/0973-1296.139790. DOI: https://doi.org/10.4103/0973-1296.139790
Guy M.K., Juengel J.L., Tandeski T.R. & Niswender G.D. 1995. Steady-state concentrations of mRNA encoding the receptor for luteinizing hormone during the estrous cycle and following prostaglandin F 2α treatment of ewes. Endocrine. 3: 585-589. DOI:10.1007/BF02953023. DOI: https://doi.org/10.1007/BF02953023
Hazzard T.M. & Stouffer R.L. 2000. Angiogenesis in ovarian follicular and luteal development. Best Practice and Research: Clinical Obstetrics and Gynaecology. 14(6): 883-900. DOI:10.1053/beog.2000.0133. DOI: https://doi.org/10.1053/beog.2000.0133
Herzog K., Brockhan-Lüdemann M., Kaske M., Beindorff N., Paul V., Niemann H. & Bollwein H. 2010. Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology. 73(5): 691-697. DOI:10.1016/j.theriogenology.2009.11.016. DOI: https://doi.org/10.1016/j.theriogenology.2009.11.016
Hirschi K.K. & D’Amore P.A. 1996. Pericytes in the microvasculature. Cardiovascular Research. 32(4): 687-698. DOI: 10.1016/S0008-6363(96)00063-6. DOI: https://doi.org/10.1016/0008-6363(96)00063-6
Janson P.O., Albrecht I. & Ahren K. 1975. Effects of prostaglandin F2α on ovarian blood flow and vascular resistance in the pseudopregnant rabbit. Acta Endocrinologica. 79(2): 337-350. DOI:10.1530/acta.0.0790337. DOI: https://doi.org/10.1530/acta.0.0790337
Jiang Y.F., Tsui K.H., Wang P.H., Lin C.W., Wang J.Y., Hsu M.C., Chen Y.C. & Chiu C.H. 2011. Hypoxia regulates cell proliferation and steroidogenesis through protein kinase A signaling in bovine corpus luteum. Animal Reproduction Science. 129(3-4): 152-161. DOI:10.1016/j.anireprosci.2011.12.004. DOI: https://doi.org/10.1016/j.anireprosci.2011.12.004
Khalil A., Sharp A., Cornforth C., Jackson R., Mousa H., Stock S., Harrold J., Turner M.A., Kenny L.C., Baker P.N., Johnstone E.D., Von Dadelszen P., Magee L., Papageorghiou A.T. & Alfirevic Z. 2020. Effect of sildenafil on maternal hemodynamics in pregnancies complicated by severe early‐onset fetal growth restriction: planned subgroup analysis from a multicenter randomized placebo‐controlled double‐blind trial. Ultrasound in Obstetrics & Gynecology. 55(2): 198-209. DOI:10.1002/uog.20851. DOI: https://doi.org/10.1002/uog.20851
Kowalewski M.P., Beceriklisoy H.B., Aslan S., Agaoglu A.R. & Hoffmann B. 2009. Time related changes in luteal prostaglandin synthesis and steroidogenic capacity during pregnancy, normal and antiprogestin induced luteolysis in the bitch. Animal Reproduction Science. 116(1-2): 129-138.DOI: 10.1016/j.anireprosci.2008.12.011. DOI: https://doi.org/10.1016/j.anireprosci.2008.12.011
Kowalewski M.P. & Hoffmann B. 2008. Molecular cloning and expression of StAR protein in the canine corpus luteum during dioestrus. Experimental and Clinical Endocrinology and Diabetes. 116(3): 158-161. DOI:10.1055/s-2007-992121. DOI: https://doi.org/10.1055/s-2007-992121
Kowalewski M.P., Mutembei H.M.I. & Hoffmann B. 2008. Canine prostaglandin F2α receptor (FP) and prostaglandin F2α synthase (PGFS): Molecular cloning and expression in the corpus luteum. Animal Reproduction Science. 107(1-2): 161-175. DOI:10.1016/j.anireprosci.2007.06.026. DOI: https://doi.org/10.1016/j.anireprosci.2007.06.026
Kowalewski M.P., Schuler G., Taubert A., Engel E. & Hoffmann B. 2006. Expression of cyclooxygenase 1 and 2 in the canine corpus luteum during diestrus. Theriogenology. 66(6-7): 1423-1430. DOI:10.1016/j.theriogenology.2006.01.039 DOI: https://doi.org/10.1016/j.theriogenology.2006.01.039
Liebermann J., Schams D. & Miyamoto A. 1996. Effects of local growth factors on the secretory function of bovine corpus luteum during the oestrous cycle and pregnancy in vitro. Reproduction, Fertility and Development. 8(6): 1003-1011. DOI:10.1071/RD9961003 DOI: https://doi.org/10.1071/RD9961003
Lipman N.S., Marini R.P., Flecknell P.A. 2008. Anesthesia and Analgesia in Rabbits. In: Fish R.E., Brown M.J., Danneman P.J. & Karas A.Z. (Eds). Anesthesia and Analgesia in Laboratory Animals. 2nd edn. San Diego: Academic Press, pp.299-333. DOI: https://doi.org/10.1016/B978-012373898-1.50015-2
Liu X., Hart E.J., Petrik J.J., Nykamp S.G. & Bartlewski P.M. 2008. Relationships between ultrasonographic image attributes, histomorphology and proliferating cell nuclear antigen expression of bovine antral follicles and corpora lutea ex situ. Reproduction in Domestic Animals. 43(1): 27-34. DOI:10.1111/j.1439-0531.2007.00848.x. DOI: https://doi.org/10.1111/j.1439-0531.2007.00848.x
Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25(4): 402-408. DOI:10.1006/meth.2001.1262. DOI: https://doi.org/10.1006/meth.2001.1262
López-Tello J., Arias-Álvarez M., Jiménez-Martínez M.Á., Barbero-Fernández A., García-García R.M., Rodríguez M., Lorenzo P.L., Torres-Rovira L., Astiz S., González-Bulnes A. & Rebollar P.G. 2017. The effects of sildenafil citrate on feto–placental development and haemodynamics in a rabbit model of intrauterine growth restriction. Reproduction, Fertility and Development. 29(6): 1239-1248. DOI:10.1071/RD15330. DOI: https://doi.org/10.1071/RD15330
Mantziaras G. & Luvoni G.C. 2020. Advanced ultrasound techniques in small animal reproduction imaging. Reproduction in Domestic Animals. 55(S2): 17-25. DOI:10.1111/rda.13587. DOI: https://doi.org/10.1111/rda.13587
Mariani T.C., Prado C., Silva L.G., Paarmann F.A., Lima M.C., Carvalho I., Campos D.B., Artoni L.P., Hernandez-Blazquez F.J. & Papa P.C. 2006. Immunohistochemical localization of VEGF and its receptors in the corpus luteum of the bitch during diestrus and anestrus. Theriogenology. 66(6-7): 1715-1720. DOI:10.1016/j.theriogenology.2006.02.030 DOI: https://doi.org/10.1016/j.theriogenology.2006.02.030
Nanas I., Barbagianni M., Dadouli K., Dovolou E. & Amiridis G.S. 2021. Ultrasonographic findings of the corpus luteum and the gravid uterus during heat stress in dairy cattle. Reproduction in Domestic Animals. 56(10): 1329-1341. DOI:10.1111/rda.13996 DOI: https://doi.org/10.1111/rda.13996
Nishimura R. & Okuda K. 2010. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. The Journal of Reproduction and Development. 56(1): 110-116. DOI:10.1262/jrd.09-162E. DOI: https://doi.org/10.1262/jrd.09-162E
Niswender G.D., Juengel J.L., Silva P.J., Rollyson M.K. & McIntush E.W. 2000. Mechanisms controlling the function and life span of the corpus luteum. Physiological Reviews. 80(1): 1-29. DOI:10.1152/physrev.2000.80.1.1 DOI: https://doi.org/10.1152/physrev.2000.80.1.1
Novy M.J. & Cook M.J. 1973. Redistribution of blood flow by prostaglandin F2α in the rabbit ovary. American Journal of Obstetrics and Gynecology. 117(3): 381-385. DOI:10.1016/0002-9378(73)90042-2. DOI: https://doi.org/10.1016/0002-9378(73)90042-2
Okita R.T. & Okita J.R. 1996. Prostaglandin-metabolizing enzymes during pregnancy: Characterization of NAD+-dependent prostaglandin dehydrogenase, carbonyl reductase, and cytochrome P450-dependent prostaglandin omega-hydroxylase. Critical Reviews in Biochemistry and Molecular Biology. 31(2): 101-126. DOI: 10.3109/10409239609106581. DOI: https://doi.org/10.3109/10409239609106581
Peker C., Kucuk N., Ucar E.H. & Erdogan G. 2009. Effect of Sildenafil Citrate on Uterine Artery Doppler Indices in Non-pregnant Rabbits. Animal Health Production and Hygiene. 9(1): 685-688.
Pharriss B.B., Cornette J.C. & Gutknecht G.D. 1970. Vascular control of luteal steroidogenesis. Journal of Reproduction and Fertility. 10: 97-103.
Polisca A., Scotti L., Orlandi R., Brecchia G. & Boiti C. 2010. Doppler evaluation of maternal and fetal vessels during normal gestation in rabbits. Theriogenology. 73(3): 358-366. DOI:10.1016/j.theriogenology.2009.09.019. DOI: https://doi.org/10.1016/j.theriogenology.2009.09.019
Reynolds L.P., Grazul-Bilska A.T. & Redmer D.A. 2000. Angiogenesis in the corpus luteum. Endocrine. 12(1): 1-9. DOI:10.1385/endo:12:1:1. DOI: https://doi.org/10.1385/ENDO:12:1:1
Russo F.M., Mian P., Krekels E.H., Van Calsteren K., Tibboel D., Deprest J. & Allegaert K. 2019. Pregnancy affects the pharmacokinetics of sildenafil and its metabolite in the rabbit. Xenobiotica. 49(1): 98-105. DOI:10.1080/00498254.2017.1422217. DOI: https://doi.org/10.1080/00498254.2017.1422217
Sandhoff T.W. & McLean M.P. 1999. Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2α is modulated by the negative transcription factor DAX-1. Endocrine. 10(1): 83-91. DOI:10.1385/ENDO:10:1:83. DOI: https://doi.org/10.1385/ENDO:10:1:83
Shrestha K., Rodler D., Sinowatz F. & Meidan R. 2019. Corpus luteum Formation. In: Leung P.C.K. & Adashi E.Y. (Eds). The Ovary. 3rd edn. Cambridge: Academic Press, pp.255-267. DOI: https://doi.org/10.1016/B978-0-12-813209-8.00016-9
Silva P.J., Juengel J.L., Rollyson M.K. & Niswender G.D. 2000. Prostaglandin metabolism in the ovine corpus luteum: Catabolism of prostaglandin F(2α) (PGF(2α)) coincides with resistance of the corpus luteum to PGF(2α). Biology of Reproduction. 63(5): 1229-1236. DOI:10.1095/biolreprod63.5.1229. DOI: https://doi.org/10.1095/biolreprod63.5.1229
Siqueira L.G.B., Torres C.A.A., Amorim L.S., Souza E.D., Camargo L.S.A., Fernandes C.A.C. & Viana J.H.M. 2009. Interrelationships among morphology, echotexture, and function of the bovine corpus luteum during the estrous cycle. Animal Reproduction Science. 115(1-4): 18-28. DOI:10.1016/j.anireprosci.2008.11.009. DOI: https://doi.org/10.1016/j.anireprosci.2008.11.009
Stocco C., Telleria C. & Gibori G. 2007. The molecular control of corpus luteum formation, function, and regression. Endocrine Reviews. 28(1): 117-149. DOI:10.1210/er.2006-0022. DOI: https://doi.org/10.1210/er.2006-0022
Takasaki A., Tamura H., Miwa I., Taketani T., Shimamura K. & Sugino N. 2010. Endometrial growth and uterine blood flow: a pilot study for improving endometrial thickness in the patients with a thin endometrium. Fertility and Sterility. 93(6): 1851-1858. DOI:10.1016/j.fertnstert.2008.12.062. DOI: https://doi.org/10.1016/j.fertnstert.2008.12.062
Tamura H., Takasaki A., Taniguchi K., Matsuoka A., Shimamura K. & Sugino N. 2008. Changes in blood-flow impedance of the human corpus luteum throughout the luteal phase and during early pregnancy. Fertility and Sterility. 90(6): 2334-2339. DOI:10.1016/j.fertnstert.2007.10.056. DOI: https://doi.org/10.1016/j.fertnstert.2007.10.056
Troisi A., Orlandi R., Maranesi M., Dall’Aglio C., Brecchia G., Parillo F., Boiti C., Zerani M. & Polisca A. 2019. Intra-ovarian dynamic blood flow in pseudopregnant rabbits during prostaglandin F2α-induced luteolysis. Reproduction in Domestic Animals. 54(2): 176-183. DOI: 10.1111/rda.13332. DOI: https://doi.org/10.1111/rda.13332
Turner P. V., Chen H.C. & Taylor W.M. 2006. Pharmacokinetics of meloxicam in rabbits after single and repeat oral dosing. Comparative Medicine. 56(1): 63-67. PMID: 16521861.
Ucar E.H., Cetin H. & Atli M.O. 2018. Effect of multiple low-dose PGF2α injections on the mature corpus luteum in non-pregnant bitches. Theriogenology. 113: 34-43. DOI: 10.1016/j.theriogenology.2018.01.018. DOI: https://doi.org/10.1016/j.theriogenology.2018.01.018
Wang D. & DuBois R.N. 2008. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Letters. 267(2): 197-203. DOI:10.1016/j.canlet.2008.03.004. DOI: https://doi.org/10.1016/j.canlet.2008.03.004
Wiltbank M.C., Gallagher K.P., Christensen A.K., Brabec R.K. & Keyes P.L. 1990. Physiological and immunocytochemical evidence for a new concept of blood flow regulation in the corpus luteum. Biology of Reproduction. 42(1): 139-149. DOI:10.1095/biolreprod42.1.139. DOI: https://doi.org/10.1095/biolreprod42.1.139
Wischral A., Haag K.T., Fonseca G.R., Gastal M.O., King S.S. & Gastal E.L. 2012. 124 Relationships between preovulatory follicle and corpus luteum blood flow in mares. Reproduction, Fertility and Development. 24(1): 174-174. DOI:10.1071/RDv24n1Ab124. DOI: https://doi.org/10.1071/RDv24n1Ab124
Zerani M., Dall’Aglio C., Maranesi M., Gobbetti A., Brecchia G., Mercati F. & Boiti C. 2007. Intraluteal regulation of prostaglandin F2α-induced prostaglandin biosynthesis in pseudopregnant rabbits. Reproduction. 133(5): 1005-1016. DOI:10.1530/REP-06-0107. DOI: https://doi.org/10.1530/REP-06-0107
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eyyup Hakan Ucar, Cevdet Peker, Gunes Erdogan, Mehmet Kose, Mehmet Osman Atli

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino