Chronic Superficial Infection in a Dog caused by Multidrug-Resistant Pseudomonas aeruginosa

Authors

DOI:

https://doi.org/10.22456/1679-9216.125086

Abstract

Background: Pseudomonas aeruginosa is a gram-negative aerobic bacterium and non-glucose fermenting, that usually
causes opportunistic infections in animals, including humans. It is rarely involved in primary disease. The antibioticresistant bacterial strains are mainly developed due to the inappropriate use of antibiotics, however treating P. aeruginosa infections can be difficult owing to their natural resistance to antibiotics. Furthermorer resistant microorganisms such as P. aeruginosa grow by developing biofilms. Inaccurate diagnoses and absence of adequate microbiological tests can cause difficulties in resolving cases. This report describes a case of chronic superficial infection in a bitch caused by multidrugresistant Pseudomonas aeruginosa (MDR-PA).
Case: A 6-year-old bitch Shih Tzu, initially presented with an exudative erythematous lesion in the snout region, which progressed to deep lesions, and spread to the back and limbs; furthermore, the animal always experienced a fever before new wounds emerged. Lesion samples, collected using a swab and processed at the Veterinary Microbiology Laboratory of the Federal University of Jatai (UFJ), revealed the presence of Pseudomonas aeruginosa. The isolate was multidrug-resistant and a carrier of TEM and ppyR genes. In the diffusion disk antibiogram, the isolate was found resistant to 14 different antibiotics belonging to 6 classes. Antimicrobial resistance was also tested using the minimum inhibitory concentration (MIC) test against imipenem, ceftazidime, ciprofloxacin, ticarcillin + clavulanic acid and aztreonam present in the MIC test strip. Treatment with amikacin and muporicin proved to be effective; however, owing to lesions extending to the face and palpebral involvement, the animal lost its eyeballs.
Discussion: Pseudomonas aeruginosa is frequently associated with nosocomial infections mainly affecting immunosuppressed patients. Among the antibiotics tested, the group with the highest number of ineffective antibiotics was beta-lactams, where sensitivity was only observed for ticarcillin and ceftazidime. Recent studies have demonstrated that ceftazidime can reduce biofilm volume, inhibit motility, and repress the expression of genes associated with bacterial adhesion in P. aeruginosa. Therefore, the production of biofilm in P. aeruginosa is an important virulence factor as it facilitates a stable environment for the microorganism, which protects the bacteria from contact with antimicrobials. In addition, prolonged exposure to a wide variety of antimicrobials creates an environment of selective pressure between microorganisms, facilitating the emergence of multidrug-resistant strains. Furthermore, it is now well recognized that low doses of antibiotics, administered during continuous and fluctuating treatments, can stimulate biofilm establishment and are partly responsible for biofilm-specific antimicrobial tolerance. The resistance profile of P. aeruginosa isolated from dogs varies considerably, and the presence of isolates with a possible biofilm production capacity represents a challenge for the interpretation of the antimicrobial susceptibility profile. Culture and antibiogram is fundamentally important, both clinically and in environmental monitoring, in addition to the use of antibiogram data for decision making in clinical treatment.

Keywords: antimicrobial resistance, susceptibility profile, MDR-PA, biofilm, exudative erythematous lesion

Downloads

Download data is not yet available.

References

Andonova M. & Urumova V. 2013. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa. Comparative Immunology, Microbiology and Infectious Disease. 36(5): 433-448. DOI: https://doi.org/10.1016/j.cimid.2013.03.003

Ansari S., Dhital R., Shrestha S., Thapa S., Puri R., Chaudhary N., Khatiwada S. & Gautam R. 2016. Growing menace of antibacterial resistance in clinical isolates of Pseudomonas aeruginosa in Nepal: an insight of beta-lactamase production. BioMed Research International. 2016: 1-8. DOI: 10.1155/2016/6437208 DOI: https://doi.org/10.1155/2016/6437208

Bajpai T., Pandey M., Varma M. & Bhatambare G.S. 2017. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna Journal of Medicine. 7(1): 12-16. DOI: 10.4103/2231-0770.197508 DOI: https://doi.org/10.4103/2231-0770.197508

Biçakcioğlu T., Yörük Ş. & Müştak H.K. 2021. Antibiotic resistance profiles of Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Etlik Veteriner Mikrobiyoloji Dergisi. 32(2): 118-123. DOI: https://doi.org/10.35864/evmd.986820

Dégi J., Moţco O.A., Dégi D.M., Suici T., Mareş M., Imre K. & Cristina R.T. 2021. Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics. 10(7): 846. DOI: 10.3390/antibiotics10070846 DOI: https://doi.org/10.3390/antibiotics10070846

Fernandes M.R., Sellera F.P., Moura Q., Carvalho M.P., Rosato P.N., Cerdeira L. & Lincopan N. 2018. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerging Infectious Diseases. 24(6): 1160-1162. DOI: https://doi.org/10.3201/eid2406.180335

Ghazalibina M., Morshedi K., Farahani R.K., Babadi M. & Khaledi A. 2019. Study of virulence genes and related with biofilm formation in Pseudomonas aeruginosa isolated from clinical samples of Iranian patients: A systematic review. Gene Reports. 17: 100471. DOI: 10.1016/j.genrep.2019.100471 DOI: https://doi.org/10.1016/j.genrep.2019.100471

Harada K., Arima S., Niina A., Kataoka Y. & Takahashi T. 2012. Characterization of Pseudomonas aeruginosa isolates from dogs and cats in Japan: current status of antimicrobial resistance and prevailing resistance mechanisms. Microbiology DOI: https://doi.org/10.1111/j.1348-0421.2011.00416.x

and Immunology. 56(2): 123-127.

Hattab J., Mosca F., Di Francesco C.E., Aste G., Marruchella G., Guardiani P. & Tiscar P.G. 2021. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Veterinary World. 14(4): 978-985. DOI: https://doi.org/10.14202/vetworld.2021.978-985

Hayashi W., Izumi K., Yoshida S., Takizawa S., Sakaguchi K., Iyori K., Minoshima K., Takano S., Kitagawa M., Nagano Y. & Nagano N. 2021. Antimicrobial Resistance and Type III Secretion System Virulotypes of Pseudomonas aeruginosa Isolates from Dogs and Cats in Primary Veterinary Hospitals in Japan: Identification of the International High-Risk Clone Sequence Type 235. Microbiology Spectrum. 9(2): e00408-21. DOI: 10.1128/Spectrum.00408-21 DOI: https://doi.org/10.1128/Spectrum.00408-21

Hillier A., Alcorn J.R., Cole L.K. & Kowalski J.J. 2006. Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Veterinary Dermatology. 17(6): 432-439. DOI: https://doi.org/10.1111/j.1365-3164.2006.00550.x

Hyun J.E., Chung T.H. & Hwang C.Y. 2018. Identification of VIM 2 metallo β lactamase producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea. Veterinary Dermatology. 29(3): 186-e68. DOI: DOI: https://doi.org/10.1111/vde.12534

1111/vde.12534

Karballaei Mirzahosseini H., Hadadi-Fishani M., Morshedi K. & Khaledi A. 2020. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microbial Drug Resistance. 26(7): 815-824. DOI: https://doi.org/10.1089/mdr.2019.0274

Lin D., Foley S.L., Qi Y., Han J., Ji C., Li R., Wu C., Shen J. & Wang Y. 2012. Characterization of antimicrobial resistance of Pseudomonas aeruginosa isolated from canine infections. Journal of Applied Microbiology. 113(1): 16-23. DOI: https://doi.org/10.1111/j.1365-2672.2012.05304.x

Olivares E., Badel-Berchoux S., Provot C., Jaulhac B., Prévost G., Bernardi T. & Jehl F. 2017. Tobramycin and amikacin delay adhesion and microcolony formation in Pseudomonas aeruginosa cystic fibrosis isolates. Frontiers in Microbiology. 8: 1289. DOI: 10.3389/fmicb.2017.01289 DOI: https://doi.org/10.3389/fmicb.2017.01289

Olivares E., Badel-Berchoux S., Provot C., Prévost G., Bernardi T. & Jehl F. 2020. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Frontiers in Microbiology. 10: 2894. DOI:10.3389/fmicb.2019.02894 DOI: https://doi.org/10.3389/fmicb.2019.02894

Otani S., Hiramatsu K., Hashinaga K., Komiya K., Umeki K., Kishi K. & Kadota J.I. 2018. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. Journal of Infection and Chemotherapy. 24(6): 428-433. DOI: https://doi.org/10.1016/j.jiac.2018.01.007

Park K.M., Nam H.S. & Woo H.M. 2013. Successful management of multidrug-resistant Pseudomonas aeruginosa pneumonia after kidney transplantation in a dog. Journal of Veterinary Medical Science. 75(11): 1529-1533. DOI: https://doi.org/10.1292/jvms.13-0194

Pintarić S., Matanović K. & Martinec B.Š. 2017. Fluoroquinolone susceptibility in Pseudomonas aeruginosa isolates from dogs-comparing disk diffusion and microdilution methods. Veterinarski Arhiv. 87(3): 291-300. DOI: https://doi.org/10.24099/vet.arhiv.160120

Pournajaf A., Razavi S., Irajian G., Ardebili A., Erfani Y., Solgi S., Yaghoubi S., Rasaeian A., Yahyapour Y., Kafshgari R., Shoja S. & Rajabnia R. 2018. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Le Infezioni in Medicina. 26(3): 226-236.

Rafiee R., Eftekhar F., Tabatabaei S.A. & Tehrani D.M. 2014. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur Journal of Microbiology. 7(9): 1-6. DOI: https://doi.org/10.5812/jjm.16436

Rafiee R., Eftekhar F., Tabatabaei S.A. & Minaee-Tehrani D. 2016. Detection of AmpC and extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Medical Laboratory Journal. 10(3): 28-32. DOI: https://doi.org/10.18869/acadpub.mlj.10.3.28

Roudashti S., Zeighami H., Mirshahabi H., Bahari S., Soltani A. & Haghi F. 2017. Synergistic activity of subinhibitory

concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World Journal of Microbiology and Biotechnology. 33(3): 1-8.

Schurek K.N., Breidenstein E. & Hancock R.E. 2012. Pseudomonas aeruginosa: a persistent pathogen in cystic fibrosis and hospital-associated infections. In: Dougherty T. & Pucci M. (Eds). Antibiotic Discovery and Development. Boston: Springer, pp.679-715. DOI: https://doi.org/10.1007/978-1-4614-1400-1_21

Sebola D., Eliasi U.L., Oguttu J.W. & Qekwana D.N. 2020. Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa. Journal of the South African Veterinary Association. 91(1): 1-6. DOI: https://doi.org/10.4102/jsava.v91i0.2052

Silva L.C.A., Pessoa D.A.N., Maia L.Â., Matos R.A.T. & Silva M.M.M. 2016. Systemic infection by Pseudomonas aeruginosa in a dog. Acta Scientiae Veterinariae. 44(Suppl 1): 164. 5p. DOI: https://doi.org/10.22456/1679-9216.83201

Thi M.T.T., Wibowo D. & Rehm B.H. 2020. Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences. 21(22): 8671. DOI: 10.3390/ijms21228671 DOI: https://doi.org/10.3390/ijms21228671

Additional Files

Published

2023-07-03

How to Cite

Alves Martins, N., Fernandes Bruno Filho, F., Zaiden, L., Romani, A. F., Barbosa Meirelles-Bartoli , R. ., Dias da Silva, V. L., … Stella, A. E. (2023). Chronic Superficial Infection in a Dog caused by Multidrug-Resistant Pseudomonas aeruginosa. Acta Scientiae Veterinariae, 51. https://doi.org/10.22456/1679-9216.125086