Chronic Superficial Infection in a Dog caused by Multidrug-Resistant Pseudomonas aeruginosa
DOI:
https://doi.org/10.22456/1679-9216.125086Abstract
Background: Pseudomonas aeruginosa is a gram-negative aerobic bacterium and non-glucose fermenting, that usually
causes opportunistic infections in animals, including humans. It is rarely involved in primary disease. The antibioticresistant bacterial strains are mainly developed due to the inappropriate use of antibiotics, however treating P. aeruginosa infections can be difficult owing to their natural resistance to antibiotics. Furthermorer resistant microorganisms such as P. aeruginosa grow by developing biofilms. Inaccurate diagnoses and absence of adequate microbiological tests can cause difficulties in resolving cases. This report describes a case of chronic superficial infection in a bitch caused by multidrugresistant Pseudomonas aeruginosa (MDR-PA).
Case: A 6-year-old bitch Shih Tzu, initially presented with an exudative erythematous lesion in the snout region, which progressed to deep lesions, and spread to the back and limbs; furthermore, the animal always experienced a fever before new wounds emerged. Lesion samples, collected using a swab and processed at the Veterinary Microbiology Laboratory of the Federal University of Jatai (UFJ), revealed the presence of Pseudomonas aeruginosa. The isolate was multidrug-resistant and a carrier of TEM and ppyR genes. In the diffusion disk antibiogram, the isolate was found resistant to 14 different antibiotics belonging to 6 classes. Antimicrobial resistance was also tested using the minimum inhibitory concentration (MIC) test against imipenem, ceftazidime, ciprofloxacin, ticarcillin + clavulanic acid and aztreonam present in the MIC test strip. Treatment with amikacin and muporicin proved to be effective; however, owing to lesions extending to the face and palpebral involvement, the animal lost its eyeballs.
Discussion: Pseudomonas aeruginosa is frequently associated with nosocomial infections mainly affecting immunosuppressed patients. Among the antibiotics tested, the group with the highest number of ineffective antibiotics was beta-lactams, where sensitivity was only observed for ticarcillin and ceftazidime. Recent studies have demonstrated that ceftazidime can reduce biofilm volume, inhibit motility, and repress the expression of genes associated with bacterial adhesion in P. aeruginosa. Therefore, the production of biofilm in P. aeruginosa is an important virulence factor as it facilitates a stable environment for the microorganism, which protects the bacteria from contact with antimicrobials. In addition, prolonged exposure to a wide variety of antimicrobials creates an environment of selective pressure between microorganisms, facilitating the emergence of multidrug-resistant strains. Furthermore, it is now well recognized that low doses of antibiotics, administered during continuous and fluctuating treatments, can stimulate biofilm establishment and are partly responsible for biofilm-specific antimicrobial tolerance. The resistance profile of P. aeruginosa isolated from dogs varies considerably, and the presence of isolates with a possible biofilm production capacity represents a challenge for the interpretation of the antimicrobial susceptibility profile. Culture and antibiogram is fundamentally important, both clinically and in environmental monitoring, in addition to the use of antibiogram data for decision making in clinical treatment.
Keywords: antimicrobial resistance, susceptibility profile, MDR-PA, biofilm, exudative erythematous lesion
Downloads
References
Andonova M. & Urumova V. 2013. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa. Comparative Immunology, Microbiology and Infectious Disease. 36(5): 433-448. DOI: https://doi.org/10.1016/j.cimid.2013.03.003
Ansari S., Dhital R., Shrestha S., Thapa S., Puri R., Chaudhary N., Khatiwada S. & Gautam R. 2016. Growing menace of antibacterial resistance in clinical isolates of Pseudomonas aeruginosa in Nepal: an insight of beta-lactamase production. BioMed Research International. 2016: 1-8. DOI: 10.1155/2016/6437208 DOI: https://doi.org/10.1155/2016/6437208
Bajpai T., Pandey M., Varma M. & Bhatambare G.S. 2017. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna Journal of Medicine. 7(1): 12-16. DOI: 10.4103/2231-0770.197508 DOI: https://doi.org/10.4103/2231-0770.197508
Biçakcioğlu T., Yörük Ş. & Müştak H.K. 2021. Antibiotic resistance profiles of Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Etlik Veteriner Mikrobiyoloji Dergisi. 32(2): 118-123. DOI: https://doi.org/10.35864/evmd.986820
Dégi J., Moţco O.A., Dégi D.M., Suici T., Mareş M., Imre K. & Cristina R.T. 2021. Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics. 10(7): 846. DOI: 10.3390/antibiotics10070846 DOI: https://doi.org/10.3390/antibiotics10070846
Fernandes M.R., Sellera F.P., Moura Q., Carvalho M.P., Rosato P.N., Cerdeira L. & Lincopan N. 2018. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerging Infectious Diseases. 24(6): 1160-1162. DOI: https://doi.org/10.3201/eid2406.180335
Ghazalibina M., Morshedi K., Farahani R.K., Babadi M. & Khaledi A. 2019. Study of virulence genes and related with biofilm formation in Pseudomonas aeruginosa isolated from clinical samples of Iranian patients: A systematic review. Gene Reports. 17: 100471. DOI: 10.1016/j.genrep.2019.100471 DOI: https://doi.org/10.1016/j.genrep.2019.100471
Harada K., Arima S., Niina A., Kataoka Y. & Takahashi T. 2012. Characterization of Pseudomonas aeruginosa isolates from dogs and cats in Japan: current status of antimicrobial resistance and prevailing resistance mechanisms. Microbiology DOI: https://doi.org/10.1111/j.1348-0421.2011.00416.x
and Immunology. 56(2): 123-127.
Hattab J., Mosca F., Di Francesco C.E., Aste G., Marruchella G., Guardiani P. & Tiscar P.G. 2021. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Veterinary World. 14(4): 978-985. DOI: https://doi.org/10.14202/vetworld.2021.978-985
Hayashi W., Izumi K., Yoshida S., Takizawa S., Sakaguchi K., Iyori K., Minoshima K., Takano S., Kitagawa M., Nagano Y. & Nagano N. 2021. Antimicrobial Resistance and Type III Secretion System Virulotypes of Pseudomonas aeruginosa Isolates from Dogs and Cats in Primary Veterinary Hospitals in Japan: Identification of the International High-Risk Clone Sequence Type 235. Microbiology Spectrum. 9(2): e00408-21. DOI: 10.1128/Spectrum.00408-21 DOI: https://doi.org/10.1128/Spectrum.00408-21
Hillier A., Alcorn J.R., Cole L.K. & Kowalski J.J. 2006. Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Veterinary Dermatology. 17(6): 432-439. DOI: https://doi.org/10.1111/j.1365-3164.2006.00550.x
Hyun J.E., Chung T.H. & Hwang C.Y. 2018. Identification of VIM 2 metallo β lactamase producing Pseudomonas aeruginosa isolated from dogs with pyoderma and otitis in Korea. Veterinary Dermatology. 29(3): 186-e68. DOI: DOI: https://doi.org/10.1111/vde.12534
1111/vde.12534
Karballaei Mirzahosseini H., Hadadi-Fishani M., Morshedi K. & Khaledi A. 2020. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microbial Drug Resistance. 26(7): 815-824. DOI: https://doi.org/10.1089/mdr.2019.0274
Lin D., Foley S.L., Qi Y., Han J., Ji C., Li R., Wu C., Shen J. & Wang Y. 2012. Characterization of antimicrobial resistance of Pseudomonas aeruginosa isolated from canine infections. Journal of Applied Microbiology. 113(1): 16-23. DOI: https://doi.org/10.1111/j.1365-2672.2012.05304.x
Olivares E., Badel-Berchoux S., Provot C., Jaulhac B., Prévost G., Bernardi T. & Jehl F. 2017. Tobramycin and amikacin delay adhesion and microcolony formation in Pseudomonas aeruginosa cystic fibrosis isolates. Frontiers in Microbiology. 8: 1289. DOI: 10.3389/fmicb.2017.01289 DOI: https://doi.org/10.3389/fmicb.2017.01289
Olivares E., Badel-Berchoux S., Provot C., Prévost G., Bernardi T. & Jehl F. 2020. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Frontiers in Microbiology. 10: 2894. DOI:10.3389/fmicb.2019.02894 DOI: https://doi.org/10.3389/fmicb.2019.02894
Otani S., Hiramatsu K., Hashinaga K., Komiya K., Umeki K., Kishi K. & Kadota J.I. 2018. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. Journal of Infection and Chemotherapy. 24(6): 428-433. DOI: https://doi.org/10.1016/j.jiac.2018.01.007
Park K.M., Nam H.S. & Woo H.M. 2013. Successful management of multidrug-resistant Pseudomonas aeruginosa pneumonia after kidney transplantation in a dog. Journal of Veterinary Medical Science. 75(11): 1529-1533. DOI: https://doi.org/10.1292/jvms.13-0194
Pintarić S., Matanović K. & Martinec B.Š. 2017. Fluoroquinolone susceptibility in Pseudomonas aeruginosa isolates from dogs-comparing disk diffusion and microdilution methods. Veterinarski Arhiv. 87(3): 291-300. DOI: https://doi.org/10.24099/vet.arhiv.160120
Pournajaf A., Razavi S., Irajian G., Ardebili A., Erfani Y., Solgi S., Yaghoubi S., Rasaeian A., Yahyapour Y., Kafshgari R., Shoja S. & Rajabnia R. 2018. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Le Infezioni in Medicina. 26(3): 226-236.
Rafiee R., Eftekhar F., Tabatabaei S.A. & Tehrani D.M. 2014. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur Journal of Microbiology. 7(9): 1-6. DOI: https://doi.org/10.5812/jjm.16436
Rafiee R., Eftekhar F., Tabatabaei S.A. & Minaee-Tehrani D. 2016. Detection of AmpC and extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. Medical Laboratory Journal. 10(3): 28-32. DOI: https://doi.org/10.18869/acadpub.mlj.10.3.28
Roudashti S., Zeighami H., Mirshahabi H., Bahari S., Soltani A. & Haghi F. 2017. Synergistic activity of subinhibitory
concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World Journal of Microbiology and Biotechnology. 33(3): 1-8.
Schurek K.N., Breidenstein E. & Hancock R.E. 2012. Pseudomonas aeruginosa: a persistent pathogen in cystic fibrosis and hospital-associated infections. In: Dougherty T. & Pucci M. (Eds). Antibiotic Discovery and Development. Boston: Springer, pp.679-715. DOI: https://doi.org/10.1007/978-1-4614-1400-1_21
Sebola D., Eliasi U.L., Oguttu J.W. & Qekwana D.N. 2020. Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa. Journal of the South African Veterinary Association. 91(1): 1-6. DOI: https://doi.org/10.4102/jsava.v91i0.2052
Silva L.C.A., Pessoa D.A.N., Maia L.Â., Matos R.A.T. & Silva M.M.M. 2016. Systemic infection by Pseudomonas aeruginosa in a dog. Acta Scientiae Veterinariae. 44(Suppl 1): 164. 5p. DOI: https://doi.org/10.22456/1679-9216.83201
Thi M.T.T., Wibowo D. & Rehm B.H. 2020. Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences. 21(22): 8671. DOI: 10.3390/ijms21228671 DOI: https://doi.org/10.3390/ijms21228671
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nadiene Alves Martins, Fábio Fernandes Bruno Filho, Lucas Zaiden, Alana Flávia Romani, Raphaella Barbosa Meirelles-Bartoli , Vera Lúcia Dias da Silva, Cleusely Matias de Souza, Ariel Eurides Stella

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides open access to all of its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project and Directory of Open Access Journals.
We define open access journals as journals that use a funding model that does not charge readers or their institutions for access. From the BOAI definition of "open access" we take the right of users to "read, download, copy, distribute, print, search, or link to the full texts of these articles" as mandatory for a journal to be included in the directory.
La Red y Portal Iberoamericano de Revistas Científicas de Veterinaria de Libre Acceso reúne a las principales publicaciones científicas editadas en España, Portugal, Latino América y otros países del ámbito latino