A Genetic Programming Model for Association Studies to Detect Epistasis in Low Heritability Data
Abstract
Keywords
Full Text:
PDFReferences
MOORE, J. H.; WHITE, B. C. Tuning relieff for genome-wide genetic analysis. In: MARCHIOR, E.; MOORE, J. H.; RAJAPAKSE, J. C. (Ed.). Proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin, Heidelberg: Springer-Verlag, 2007. v. 4447, p. 166–175.
BUSH, W. S.; MOORE, J. H. Chapter 11: Genome-wide association studies. PLoS Comput Biol., v. 8, n. 12, p. 1–11, 2012.
MANOLIO, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med, v. 363, n. 2, p. 166–176, 2010.
GRIFFITHS, A. et al. An Introduction to Genetic Analysis. 7. ed. New York, USA: W. H. Freeman, 2000. v. 1.
GRIFFITHS, A. J. Introduc ̧a ̃o a` gene ́tica. 9. ed. Rio de Janeiro, Brazil: Guanabara Koogan, 2008. v. 1.
TAN, H. et al. The estimation of heritability for twin data based on concordances of sex and disease. Chronic Dis Can., v. 26, n. 1, p. 9–12, 2005.
GU, J.; WU, X. Genetic susceptibility to bladder cancer risk and outcome. Per Med., v. 8, n. 3, p. 365–374, 2011.
CZENE, K.; LICHTENSTEIN, P.; HEMMINKI, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int. J. Cancer, v. 99, n. 2, p. 260–266, 2002.
CZENE, K.; LICHTENSTEIN, P.; HEMMINKI, K. Environmental and heritable causes of cancer among 9.6 million individuals in the swedish family-cancer database. Int J Cancer., v. 99, n. 2, p. 260–266, 2002.
POULSEN, P.; KYVIK, K. O.; VAAG A.AND BECK- NIELSEN, H. Heritability of type ii (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia, v. 42, n. 2, p. 139–145, 1999.
MOORE, J.; WHITE, B. Genome-wide genetic analysis using genetic programming: The critical need for expert
knowledge. In: RIOLO, R.; SOULE, T.; WORZEL, B. Genetic Programming Theory and Practice IV. 1. ed. Boston, USA: Springer, 2007. (Genetic and Evolutionary Computation, v. 1), cap. 2, p. 11–28.
SZE-TO, H.-Y. et al. Gp-pi: Using genetic programming with penalization and initialization on genome-wide
association study. In: RUTKOWSKI, L. et al. (Ed.). Artificial Intelligence and Soft Computing. 1. ed. Berlin, Germany:
Springer, 2013, (Lecture Notes in Computer Science, v. 7895). cap. 30, p. 330–341.
GREENE, C. S.; WHITE, B. C.; MOORE, J. H. Using expert knowledge in initialization for genome-wide analysis of epistasis using genetic programming. In: RYAN, C.; KEIJZER, M. (Ed.). Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2008. v. 1, p. 351–352.
MOORE, J.; WHITE, B. Genome-Wide Genetic Analysis Using Genetic Programming: The Critical Need for Expert Knowledge. 2007.
KIRA, K.; RENDELL, L. A. A practical approach to feature selection. In: SLEEMAN, D.; EDWARDS, P. (Ed.). Proceedings of the Ninth International Workshop on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. v. 1.
NUNKESSER, R. et al. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics, v. 23, n. 24, p. 3280–3288, 2007.
BLEULER, S. et al. Multiobjective Genetic Programming: Reducing Bloat by Using SPEA2. In: CEC 2001. Congress on Evolutionary Computation. Seoul, South Korea: IEEE, 2001. v. 9.
LUKE, S. et al. ECJ 16: A Java-based Evolutionary Computation Research System. 2007.
R.C.R TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2008.
LIAW, A.; WIENER, M. Classification and regression by randomforest. R News, v. 2, n. 3, p. 18–22, 2002.
URBANOWICZ, R. J. et al. METHODOLOGY GAMETES : a fast , direct algorithm for generating pure , strict , epistatic models with random architectures. BioData Min., v. 5, n. 16, p. 1–14, 2012.
DOI: https://doi.org/10.22456/2175-2745.79333
Copyright (c) 2018 Igor Magalhaes Ribeiro; Carlos Cristiano Hasenclever Borges; Bruno Zonovelli da Silva; Wagner Arbex

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indexing databases:
Acknowledgments:
