Use of cytomorphometry for classification of subcellular patterns in 3D images

Eduardo Henrique Silva, Jefferson Rodrigo de Souza, Bruno Augusto Nassif Travençolo

Abstract


This paper presents a methodology for the classification of subcellular patterns by the extraction of cytomorphometric features in 3D isosurfaces. In order to validate the proposal, we used a database of 3D images of HeLa cells with nine classes. For each cell, several morphological attributes were extracted based on its isosurface. Using the Quadratic Discriminant Analysis (QDA) classifier with the hybrid attribute selector, we achieved 97.59 of accuracy and F1-score of 0.9757 when classifying the subcellular patterns.

Keywords


Image Processing; Cytomorphometry; HeLa cells;QDA

Full Text:

PDF

References


BARBOSA, E. B. et al. Proteômica: metodologias e aplicações no estudo de doenças humanas. Revista da Associação Médica Brasileira, Elsevier BV, v. 58, n. 3, p. 366–375, may 2012.

CHEN, X.; MURPHY, R. Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. [S.l.]: Institute of Electrical and Electronics Engineers (IEEE), 2004.

WALDEMARIN, K.; BELETTI., M.; COSTA, L. Nuclear morphometry of neoplastic cells as a method for diagnosis of histiocytoma, mastocytoma and transmissible venereal tumor in dogs. Real-Time Imaging, Elsevier BV, v. 10, n. 4, p. 197–204, aug 2004.

CARDONA, A.; TOMANCAK, P. Current challenges in open-source bioimage informatics. Nature Methods, Springer Nature, v. 9, n. 7, p. 661–665, jul 2012.

MEIJERING, E. et al. Imagining the future of bioimage analysis. Nature Biotechnology, Springer Nature, v. 34, n. 12, p. 1250–1255, dec 2016.

HANSEN, C. D. et al. (Ed.). Scientific Visualization. [S.l.]: Springer London, 2014.

LORENSEN, W. E.; CLINE, H. E. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, Association for Computing Machinery (ACM), v. 21, n. 4, p. 163–169, aug 1987.

XU, Y.-Y.; YAO, L.-X.; SHEN, H.-B. Bioimage-based protein subcellular location prediction: a comprehensive review. Frontiers of Computer Science, v. 12, n. 1, p. 26–39, Feb 2018. ISSN 2095-2236. Dispon´ıvel em: hhttps://doi.org/10.1007/s11704-016-6309-5i.

NEWBERG, J.; MURPHY, R. F. A framework for the automated analysis of subcellular patterns in human protein atlas images. Journal of Proteome Research, American Chemical Society (ACS), v. 7, n. 6, p. 2300–2308, jun 2008.

HUH, S.; LEE, D.; MURPHY, R. F. Efficient framework for automated classification of subcellular patterns in budding yeast. Cytometry Part A, Wiley-Blackwell, v. 75A, n. 11, p. 934–940, nov 2009.

KHEIRKHAH, F. M.; HAGHIPOUR, S. Classification of subcellular location patterns in fluorescence microscope images based on modified threshold adjacency statistics. In: 2010 6th Iranian Conference on Machine Vision and Image Processing. [S.l.]: IEEE, 2010.

PÄRNAMAA, T.; PARTS, L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3: GENES, GENOMES, GENETICS, Genetics Society of America, v. 7, n. 5, p. 1385–1392, apr 2017.

VELLISTE, M.; MURPHY, R. Automated determination of protein subcellular locations from 3D fluorescence microscope images. In: Proceedings IEEE International Symposium on Biomedical Imaging. [S.l.]: Institute of Electrical and Electronics Engineers (IEEE), 2002.

HUANG, K.; MURPHY, R. F. From quantitative microscopy to automated image understanding. Journal of Biomedical Optics, SPIE-Intl Soc Optical Eng, v. 9, n. 5, p. 893, 2004.

HUANG, K.; MURPHY, R. F. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics, Springer Nature, v. 5, n. 1, p. 78, 2004.

GUILHERMANO, L. et al. Páginas da história da medicina. [S.l.]: EDIPUCRS, 2010. ISBN 9788574309743.

MURPHY, R. F.; VELLISTE, M.; PORRECA, G. Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. Journal of VLSI signal processing systems for signal, image and video technology, Springer, v. 35, n. 3, p. 311–321, 2003.

SILVA, E. H. et al. Ambiente web para citomorfometria usando imagens 3D. Journal of Health Informatics, v. 8, p. 643–652, 2016.

ALYASSIN, A. M. et al. Evaluation of new algorithms for the interactive measurement of surface area and volume. Medical physics, Wiley Online Library, v. 21, n. 6, p. 741–752, 1994.

MESMOUDI, M. M.; FLORIANI, L. D.; MAGILLO, P. Discrete curvature estimation methods for triangulated surfaces. In: Applications of Discrete Geometry and Mathematical Morphology. [S.l.]: Springer Nature, 2012. p. 28–42.

SAULTON, A. et al. The role of visual similarity and memory in body model distortions. Acta Psychologica, Elsevier BV, v. 164, p. 103–111, feb 2016.

ZUNIC, J.; ROSIN, P. A new convexity measure for polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers (IEEE), v. 26, n. 7, p. 923–934, jul 2004.

KASSIMI, M. A.; ELBEQQALI, O. Semantic based 3D model retrieval. In: 2012 International Conference on Multimedia Computing and Systems. [S.l.]: Institute of Electrical and Electronics Engineers (IEEE), 2012.

BACUS, J. W. et al. Image morphometric nuclear grading of intraepithelial neoplastic lesions with applications to cancer chemoprevention trials. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, v. 8, p. 1087–1094, dez. 1999. ISSN 1055-9965.

LIU, H.; MOTODA, H. Computational Methods of Feature Selection. [S.l.]: CRC Press, 2007. (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series). ISBN 9781584888796.

MYERS, J. L.; WELL, A. D.; LORCH JR, R. F. L. Research design and statistical analysis. [S.l.]: Routledge, 2013.

PIROOZNIA, M. et al. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, Springer Nature, v. 9, n. Suppl 1, p. S13, 2008.

JENI, L. A.; COHN, J. F.; TORRE, F. D. L. Facing imbalanced data–recommendations for the use of performance metrics. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. [S.l.]: Institute of Electrical and Electronics Engineers (IEEE), 2013.

MARTINEZ-ARROYO, M.; SUCAR, L. Learning an optimal naive Bayes classifier. In: 18th International Conference on Pattern Recognition (ICPR 2006). [S.l.]: Institute of Electrical and Electronics Engineers (IEEE), 2006.

SRIVASTAVA, S. et al. Bayesian quadratic discriminant analysis. Journal of Machine Learning Research, v. 8, p. 1287–1314, 2007.

HEARST, M. et al. Support vector machines. IEEE Intelligent Systems and their Applications, Institute of Electrical and Electronics Engineers (IEEE), v. 13, n. 4, p. 18–28, jul 1998.

DUDANI, S. A. The distance-weighted k-nearestneighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, Institute of Electrical and Electronics Engineers (IEEE), SMC-6, n. 4, p. 325–327, apr 1976.

THEODORIDIS, S. et al. Pattern Recognition. [S.l.]: Elsevier Science, 2006.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The Elements of Statistical Learning. New York, NY, USA: Springer New York Inc., 2001. (Springer Series in Statistics).

GEURTS, P.; ERNST, D.; WEHENKEL, L. Extremely randomized trees. Machine Learning, Springer Nature, v. 63, n. 1, p. 3–42, mar 2006.




DOI: https://doi.org/10.22456/2175-2745.80598

Copyright (c) 2018 Bruno Augusto Nassif Travençolo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.