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Abstract: This paper presents deterministic versions to the hashihgnses of
Botelho, Kohayakawa and Ziviani (2005) and Botelho, PaghzZiiani (2007), also
proves a statement left as open problem in the former wot&tew to the correct-
ness proof and to the complexity analysis of their scheme.deterministic variants
have been implemented and executed over datasets with tpQA0DO0 keys and
have brought equivalent performance results between tieerdimistic and the origi-
nal randomized algorithms.

Resumo: Neste trabalho apresentamos versdes deterministicaspasguemas
de hashingde Botelho, Kohayakawa e Ziviani (2005) e de Botelho, Pagliviazi
(2007). Também respondemos a um problema deixado em alegdmeiro dos
trabalhos, relacionado a prova da corretude e a andliserdplexidade do esquema
por eles proposto. As versdes deterministicas deseneshf@ram implementadas
e testadas sobre conjuntos de dados com at#8)2B00 de chaves, e os resultados
verificados se mostraram equivalentes aos dos algoritraataizados originais.

1 Introduction

A minimal perfect hashing scherras defined in[1,12,13], is an algorithm that, given a
setSwith n keys from an universed, constructs a hash functitn U — {0,...,n—1} which
maps without collisiorsto {0,...,n— 1}. We are interested only in hashing schemes whose
outputs are hash functions wi@(1) lookup time. For our purposes, every keis assumed
to be a chain of at modt symbols taken from a finite alphab®tfor a fixed constant. As
an example, keys can be URLs of length at mosthich we are trying to map to memory
addresses, and the alphabet would then contain decim#d,digtin letters and some special
characters lik¢ and?.

Hashing is a widely studied topic in Computer Science. Magpiobjects bijectively
to hash table address¢e,...,n—1} is a very often problem, and minimal perfect hash
functions, in particular, are useful in situations relatedefficient storage and fast retrieval
of items from static sets, such as words in natural langyagssrved words in programming
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languages or interactive systems, universal resourcéidosg URLS) in Web search engines,
or item sets in data mining techniques/ [1].

Derandomization is an important subject of Computatior@ah@lexity and a way to
understand whether randomness in algorithms is nece$samally, a central problem about
complexity of randomized algorithms i&“= BPP?". For example, the problem of polyno-
mial identity testing is ifBBPP, which means that it is solvable by a polynomial-tiMente
Carlo algorithm [4], an algorithm whose answer can be wrong withrizted probability. De-
randomizing polynomial identity tests has deep conseqgeeimcComputational Complexity
[5]. On the other hand, the celebrated polynomial-time meit@istic algorithm for primality
testing [6] is a successful derandomization dflante Carlopolynomial-time algorithm[[7].
Differently, the hashing schemes we study are knowhass Vegasalgorithms [4], which
means that their answer is always right, but the time conitgléxa random variable. Prob-
lems solvable by as Vegaslgorithms with expected polynomial-time complexity fothe
classzPP C BPP.

We shall present derandomized versions to the hashing sshemBotelho, Ko-
hayakawa and Ziviani (2005) and of Botelho, Pagh and Zijad07), from now on referred
as BMZ and BDZ, respectively. These schemesla® Vegaslgorithms that, given a set
with n keys, construct in expected tin@n) a hash function which i®(1)-evaluation time
maps without collision the keys to the s@,...,n—1}. The problem of constructing a
minimal perfectO(1)-evaluation time hash function given a set withkeys is, of course, in
P [8], therefore our work just shows that thesery practicalalgorithms didn’t need to be
randomized to achieve a good average performance. Actwallgerandomize the schemes
in a very simple manner, and the resulting algorithms arersels ofO(n) average-case time
complexity. Additionally, we also give a proof for a questiteft open in [1] (Equationl2
below), closing the complexity analysis and the corregmesof of the BMZ scheme.

In what follows, unless stated otherwise, we use the tgraphto refer to a simple
graph, that is an unweighted, undirected graph containinpops or multiple edges. The
termcritical subgraphof a graph refers to the maximal subgraph with minimum dedre.
The termparentof a vertex in a graph search is used according to the traditimeaning, as
could be found in[[9], in any graph search the tdree edgeefers to an edge in which one
endpoint is the parent of the other, and the téxawck edgeefers to an edge which is not a
tree edge. Also, we writa(n) = b if a(n) — basn — .

This paper is organized as follows. In Secfidn 2 we shall gibeef review on related
works, in Sectiofi3 we shall present deterministic versafiibe schemes BMZ and BDZ, in
Sectior 4 we shall prove a graph theoretical result relaie¢te complexity analysis and to
the correctness proof of BMZ scheme, in Secfibn 5 we shadl gerformance comparisons
between the randomized and derandomized schemes and fin&lctio 6 we shall close
with some considerations about hashing and our results.
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2 Related works

It is known that finding a perfect hash function for sets witkeys cannot be done
in o(n) time [3], although many)(n)-time perfect hashing schemes are known from litera-
ture [2,[10/11] 12]. For example, the randomized hashingreehpresented in [3], which
maps then keys to the edges of an acyclic graph 089 vertices and then uses a depth-first
search to label the edges with the values 1 n, constructs a minimal perfect hash function
in O(n) expected time. The constructed hash function requiggogn) bits to be stored,
and this amount of space is proportional to the size of thehgrdrhis important hashing
scheme inspired the BMZ scheme [1], which, allowing the greapbe cyclic, reduces the
number of vertices to.15n.

In 1984 Fredman and Komlds [13] proved thdge+ Iglgu+ O(logn) is a lower
bound for the space @(1)-evaluation time hash functions built by a minimal perfetteme
on an universe witlu objects. Remark that this means about4g&.443 bit per key. In ad-
dition, Melhorn [14] presented in 1984 a theoretical schavith which proved the lower
bound to be tight. His scheme however was an exponentia-dilgorithm. Both schemes
of [3] and [1], although perfect, minimal, practical and &#nt in time, construct hash func-
tions represented by an undesirable amount of space, ifkedan#o account that it is possi-
ble to have minimal perfect hashing schemes whose outphtfbastions require onl(n)
bits [14]. Even the space of the latter being smaller thahdhtihe former, it does not escape
from the asymptoti©(nlogn).

The practical, minimal, perfect ar@@n)-expected time BDZ schemie [2], presented in
2007, not only achieves th@(n) space to the representation of the constructed hash functio
but also gets this amount to be62n, just a little greater than.443. More recently, better
practical hashing schemes were proposed[15, 16]. The oBelagzougui, Botelho and Di-
etzfelbinger[[15], known as CHD, generatesd(n) time a minimal perfecO(1)-evaluation
time hash function which requires just abou@&bits per key. The authors’ experiment show
that CHD is more efficient than other schemes concerningrnaing and evaluation time
too. Nevertheless, one can still set CHD parameters torob#gter results according to each
application. For example, if one does not need the hashiamtd be minimal, CHD can
map without collision then keys to addresses 1., m, wherem= 1.23n, in a way that the
generated hash function requires abodtHits per key. Evenmore, if one sets= 2n, one
gets 067 bits per key. CHD also shows up very efficientkeperfect hashing, where at most
k keys can be mapped to the same address. BMZ, BDZ, CHD and lmiseing schemes
were implemented in CMPH (C Minimal Perfect Hashing) lilgrateveloped and maintained
atSour ceFor ge. net by the authors themselves.

Below, for sake of completeness, we give a short review oB¥& and BDZ schemes,
though we strongly recommend [1, 2] for more details.
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21 BMZ

This is a hashing scheme proposedLin [1] which construc@(im expected time a
minimal perfect hash function given a setwith n keys. It mapsS to the setE(G) of the
n edges of a grap® on 115n vertices and then tries to find a way to assign labels to the
vertices so that the edges labels, defined to be the sum obetslfabels, will be the whole
set{0,...,n— 1}. Two properties abous are required:

Property £2;1: The critical subgraph o, denoted byGi;, must be connected.
Property 2. |E(Gerit)| < 5|E(G)].

Both Properties??; and &2, occur in a random graph onl1bn vertices anch edges with
probabilityp = 1 [1].

BMZ is a three-step hashing scheme: first is thapping stepwhen the keys are
mapped to the edges of a graph; second iotbering stepwhenGgj; is found; and third is
thesearching stepwhen the edges are labeled, starting at thog&.jin

In themapping stephe setSis mapped to the edge set of a random gr@gty picking
up two random functionky, hy: S— V(G), so a keyx € Sis mapped to the edge

o(x) = {h1(x),h2(x) }, if ha(x) # ha(x), )
| {M(x),2hi(x) +1}, otherwise

and, if we havee(x) = e(y) for distinctx andy, we simply pick up another pair of functions
(h1,hy). The expected number of iterations of this procedure is 8248 [1].

In the ordering stepBMZ finds Gt by successively removing from® the edges
incident to vertices of degree at most 1. See Example 1 below.

In the searching ste@BMZ first labels the edges 6. After that, the other ones
can receive the non-used labels in thigical part. Labeling the critical edges can be done
by a simple greedy strategy performed in a breadth-firsichean Gi;. We assign to the
initial vertexug of the search the labelup) = 0 and initialize a counter variabiewith 1, so
each searched vertex# ug is labeled withg(v) = i, whereupon is incremented each time
is used. Whenever we assign the labtl a vertex and this assignmdatls, we increment
and try again on the same vertex, never changing earliegrassilabels. As each edge label
h({u,v}) is the sung(u) +g(v), an assignment cdail if, when trying to assiginto v, we find
a neighbom of v such that the labéi({w,v}) = g(w) +i collides with the label of another
edge previously labeled.

Let us denote by; the total number of verticegassignmentms the search o,
and byNpedgesthe number of back edges Gtix according to the search. Ini[1] the authors
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showed that under the hypotheses of Proped#esand &7, and of

N < Nbedges (2)

the labeling procedure never causes an esigehaveh(e) > n— 1, assuring minimality to
the hash function we are constructing (see Thedlem 1 beMetyvithstanding, if some edge
ereceivesh(e) > n— 1, because of the infinitesimal probability @fnot satisfying some of
Properties??; and%,, the whole scheme is restarted. At the end of the procesbijjéation
hoe: S— {0,...,n— 1}, which maps eackin Sto an address between 0 and 1, is the
desired minimal perfect hash function.

Example 1 ([1]): As shown in the Figur€l1, by successively removing edgesiémtito
vertices of degree at most 1 we get

Gerit = ({0,3,4,7,8},{{0,8},{8,3},{3,4},{4,8},{8,7},{7,0} })

=2 Q=) 76=2) Q=2 =2 O=2)
6(d=0) 1d=2) 6 Td=1) 6 1
° [ )
8(d=4)
5(¢=0) 20=D) 5 2 5 2
A=z 392 Aa=2) 392 LICETRNNC A)
(@ (b) (c)

Figure 1. Finding the critical subgraph of a graph

For an example of BMZ searching step, let’s start at vertexb8eadth-first search
on Gt indicated in Figuréll(c), assigning O g88). Next vertex searched is 0, and we
makeg(0) =i = 1. Incrementing, we search for 3, which is assigned to labe3) =i = 2.
Now i = 3, and 4 is searched and assigned smoothty40 = i = 3. But, when searching
for 7, if we makeg(7) =i = 4, a collision occurs between labéi§{7,0}) = 4+ 1 and
h({3,4}) = 2+ 3. Hence, we try aeassignmenincrementing. Anyhow, if we makeg(7) =
i =5, a collision takes place betweb({8,7}) andh({3,4}). Another reassignment comes
to pass, but this time, makirg(7) =i = 6, we finally get the labels to all critical edges, as
Figure[2(a) illustrates. Now we can simply perform a deptst-iearch on the non-critical
edges to assign them the labels in.0,n— 1 not used folG, in our example 0 and 4, as
shown in FiguréR(b).
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Figure 2. Searching for minimal perfect hash functibn

The core result obtained inl[1] runs as follows.

Theorem 1(Botelho, Kohayakawa and Zivianil[1]Jf N < Noedges and ifGe;ir satisfies both
Properties?; and %7,, then the maximum labehaxAg assigned to a critical edge by BMZ
searching step is at mast- 1.

Sketch of proofAs variablei is incrementedV (Ggrit)| + N: times, the biggest value assigned
to a critical vertex is at mo$¥ (Gerit)| + Nt — 1, the second biggest value is at md&tGerit )| +
Nt — 2. Thus, maXde < 2|V(Gerit)| — 3+ 2Ne. If Nt < Npedges then mae < 2|V (Geiit)| —
3+ 2Npedges Gerit is connected, so the number of tree edges in the seafel{@yit)| + 1,
and, consequentliNyedges= |E(Gerit)| — |V (Gerit)| + 1. Therefore, make < 2|E(Gerit)| — 1,
and the theorem follows froffe (Gerit) | < %|E(G)| and|E(G)| =n. O

2.2 BDZ

This is a hashing scheme proposedLin [2] which construc@(im expected time a
minimal perfect hash function that requires only abo@22bits per key, very close to the
tight lower bound result of about443 bit per key. It map$to the edge set of a 3-partite
3-hypergraplG with t = 1.23n vertices anch edges. Though BDZ is originally defined to
be performed using epartiter-hypergraph for any > 2, the best results are obtained when
r = 3. BDZ is not a generalization nor an expansion of BMZ. Whil8MZ the label of an
edge is the sum of the labels of the vertices belonging todatige, in BDZ the label of an
edge isthe label of the vertexassignedo that edge, as we shall define. Remark that BMZ
does not require the graph to be bipartite.

Besides of 3-partiteness, BDZ requires the 3-hyperg@&phother property:
Property #73: The edges sdf(G) must be orderable in a list= [ey, ..., ey such that every
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edgeej has at least one vertex not belonging to apyor all j' > j.

Every acyclic hypergraph satisfies this property, of coufserthermore, according
to [17,[3], acyclicness occurs in a random 3-partite 3-hgrsgrh on 123n vertices anch
edges with probabilityp =~ 1. Thus, in itsmapping stepBDZ use three random functions
hj: S—V;j, for j =0,1,2, to map each keyto the edggho(x), h1(x),h2(x) }, where

= {1 052 1) @

are the parts 0¥ (G). The hypergrapl cannot contain multiple edges, so we redraw the
functionshj when{hg(x),h1(x),h2(x)} = {ho(y), h1(y),h2(y)} for distinctx andy. As exem-
plified in Figure 3, ordering the edges in listcan be done by simply removing successively
from G the edges incident to vertices of degree at most 1, until we ha edges to remove.

If edges remain such that none of them can be removed, theingagiep draw another set
of random functions. I [2] was shown that the probabilityedrawingh;, due to multiple

edges or due to fail while ordering edged.inis p ~ 0.

4®
L =[{2,4,5},{2,3,6}]

(©
6® ol
5e o2 S *2
- 40 3
L= [{2,4,5),{2,3,6},{1,3,5}] L=1[{2,4,5},{2, 3,(2}),{1, 3,5},1{1,3,6}]

(d)
Figure 3. Ordering the edges of a hypergraph in a list, according tpéttyg &3

BDZ assigning stefiinds a functionp which maps injectivel§e(G) toV(G), in order
to assign the verteg(e) to the edgee. We getp by traversing the edges in the reverse order
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en,...,e1 with respect toL. Every vertex is initially labeled with 3. Then, for each edg
e = {up,us, Uy} traversed, wherep € Vo, u; € V; andu, € V,, we take exactly one vertex
Ui € enot yetvisited labeling it with

o(ui) = <i > g(v)) mods3, )

v visited

and thervisit all vertices ine. At the end of assigning step the sum modulo 3 of the labels for
all vertices in an edge = {up, us, Uz} will be the index of the vertex which is assigned ¢o

by functionp. As well, a labelg(u) of a vertexu is not equal to 3 if and only ifi is assigned

to an edge. In other words, if and onlwifis image of some edge by the functipn

Compounding mapping and assignment steps gives us a peagttfunction for set
S. Each key, mapped to an edge of the hypergi@plis mapped by to an address in
V(G) ={0,...,1.23n— 1}. For the sake of making minimal this hash function, BiaZiking
stepcomputes a rank table to achieve a function ravikG) — {0,...,n— 1}, injective for
p(E(G)), defined by rantu) = |[{ve V(G): v< ueg(v) # 3}|. The authors suggest the
work of [18] for implementing efficiently this rank table.

3 A simple strategy for derandomizing BMZ and BDZ

In mapping step BMZ scheme draws the functibng,: S— {0,...,t — 1}, fort =
1.15n, by filling randomly two table§; andT,. Each table hak x |Z| numbers in the set
{0,...,t =1}. Recall that a key € Sis a sequence = x;xz--- Xy Oof [x| < L symbols in
>, thus the lines of the tables correspond to the positionkéarkey, as the columns to the
symbols. Thus, fof = 1,2, the value ohj(x) is defined by

hj(x) = (iiTj [i,Xi]) modt. (5)

We can show([11, Section 3.1] that the probability of a ghir,h,) giving a simple graph is
about €1/11% =~ 0.469. This means that approximately!69 of all possible pairéT;, T»)
aregoodpairs: they generatle; andh, whereby the graph obtained doesn’t have loops or
multiple edges. Our deterministic version of BMZ simplyadsishes an ordering to search
for all possible pairgT, T») in a way that the expected number of probes until findiggad
one is at most 3.

From now on, we look at each pdifi, T,) as a numbeT with 2L|Z| digits in base:
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the j-th digit, 0< j < 2L|Z|, is Ta[b, c], where thea, b andc are given by:

1, if j <L|Z[;
a—=

2, otherwise;

j .

— 1 f L|Z|;
- L|Z|J+ ! <Lzl (6)
= L ) o

{|Z|J +1-L, otherwise;

c=(jmod|Z|) + 1.

Moreover, we need a constant with|Z| digits such that added successivelyTtanodulo
N + 1 gives all possibl&N + 1 numbers with B|Z| digits. We show in Propositiddl 1 that if
t —1is divisible by 3, then we can fix the constantg&3. This implies that we must consider

1. t=min{me N: m> 1.15nandm— 1 is divisible by 3 instead of 115n;

2. that, if a pair of tables is n@ood we take next simply addin@ — 1) /3 modulot to
each position in table, propagating carry from each pastticanother, in view oN/3
in baset has all digits equal t¢t — 1) /3.

In Propositiori 1L, we assume without loss of generality thatfirst number in sequenee
is 0, but actually, in practice, our first pair of tables isaibed by filling the tables with
0,1,2,...,t—1,0,1,2, ...

Proposition 1: If t — 1 is divisible by3, and ifop = 0, and if

i1 = (oj +§) mod(N + 1) @)

forall j > 0, then{og,...,on} ={0,...,N}.
Proof. Let us suppose that- 1 is divisible by 3, thus
N = (t— Dt (t— Dt 4 (t— D24 (£ — D22 (8)

also is divisible by 3, furthermori/3 is an integer whose prime factors are factordNof
Moreover, 3 is the only prime factor &f that might not be factor dii /3. Because none of
the primes which divid& dividesN + 1, we have thalN/3 andN + 1 are coprimes.

Forall j € {0,...,N}, 0j = (JN/3)mod(N +1). ButN+1 andN/3 are coprimes,
andN + 1 never dividegN /3 for any 0< j < N. By consequencegj # 0 forall 0< j < N.
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Now, let us assume that there exists some repetitigiog. . ., on }, beingoj the first
repeated element, equal to somefor somej’ < j. We must havg’ > 0. However,

... N
((1=1)75 ) mod(N+1) =0, (©)
ando;_j =0, a contradiction, sincg— j’ > 0. O

Remark that Propositidd 1 means that taking successivelypadr of tableg(T;, T,)
when one fails guarantees us that no pair will be repeatetialhpairs have been taken.
Evenmore, as.@69 of the pairs argood we might affirm that in the average case our deter-
ministic approach finds@oodpair in about 213 iterations. Trying to make one pair different
the most from the next, till we have similar pairs only after 2.13 steps, can be viewed as a
way of jumpingenough in the search space, since we can fairly believerthet shanges in
the tablesr; andT, would not make great differences in the structure of the getad graph.

We use the very same strategy for derandomizing BDZ. Acogrth [2], BDZ uses
the works of [19]_20] to drawg, h; andh; by filling with random bits a matrix, . , where
y is a constant. The matrik gives a functiorh’ which maps each keyto a chainh'(x) of y
bits, from which we obtairng, h; andh; as follows: ifx is the binary representation of key
x, ' (x) is given by (x) = AxT, and eacth;, for j = 0,1,2, is given by

() = (NGB +- 8 — 1) mod(5) + (%), (10)

wheref is the chosen constant that defines the number of bits usedhfréor computing
eachh;. By the way, we usé&’(x)[a..b] to denote the natural number whose binary represen-
tation is the subchain df (x) starting at positiom and ending at positioh.

As demonstrated in Propositi@h 2, ordering all posshble 1 matricesA in a deter-
ministic sequence is achievedyf L is even. We likewise consider a matrix as a number
with y- L bits, and again add moduld+ 1 each number in sequenceNg3, whose binary
representation i§0101...01), as Equatiofi 13 states. In other words, if a matrix isgumd
we take next simply adding 1 modulo 2 to odd positions and Outw# to even positions,
propagating carry from each position to another. Propmefi assumes the first number of
the sequence to be 0 by convenience, but the initial matracigally the one obtained by
filling its cells with 100110011001.

Proposition 2: If y- L is even, and ity = 0, and if
N
i1 = (oj +§) mod(N + 1) (11)

forall j > 0, then{og,...,on} ={0,...,N}.
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Proof. If y-L is even, then
yL-1 yL-1

N = j;21:31;21, (12)

j even

and, thereupon,
y-L-1 N
3

2,7
J:

j even

(13)

Equation[IB means tha is divisible by 3, so the proof follows analogous to proof for
Proposition L. O

As a matrixA has probabilityp ~ 0 of being bad, since this is the probability of re-
drawinghj, almost all matrices in the deterministic ordering seqeegenerate a hypergraph
without multiple edges satisfying Propertys.

4 A proof for Equation PJ

Recall BMZ searching step labels the critical edges of aly@py performing a
breadth-first search on the critical subgraplGofEach time an unlabeled vertexs discov-
ered, the search assignswthe current value of the variableand if this assignment fail$,
is incremented by one and a new attempt is made. We call eabrasiempt aeassignment
As we have transcribed in Theorém 1, BMZ authots [1] show, tinasmuch a$ satisfies
two properties aboubi; that almost all graph satisfies and Equalibn 2, which waetn
in [I], holds, we will never label an edge with a value gre#éttann— 1. Using Lemmal2, in
Theoreni B we present a proof for Equafidn 2, closing the tteml analysis of BMZ.

Lemma 2: In critical part of BMZ searching step, whenever we assiga teee edge a label,
say, |, for surej is greater than any label of any other already labeled trge.ed

Proof. Let us consider the moment in depth-first search the tree edgassigned to label
j, no matter this assignment fails or not. This is the momerdgwdomer € eis assigned to
labeli, wherei is the counter variable of BMZ searching step®gi.. Thenj =i+ g(vo),
wherey is the parent of in the search. Agis a back edges = {vp, v}.

Suppose, for the sake of contradiction, that there is a pusly labeled tree edge
{v1,v2} such thah({vy,v2}) = g(v1) + g(v2) > j. We can assume

9(vo) <g(v1) <g(v2) <i. (14)
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It follows that vy was dequeued beforg, which was dequeued befowg, which was de-
gueued before, therefore, these vertices were queued respecting theseen, v, Vo, V.
But whenv, was queuedy; had already been dequeued, becaysis the parent of/; in
search. Thus, wheny was queuedyy had already been dequeued, queusirgen before,
being queued, a contradiction. O

We proofN; < Npedgesby showing an injection from the set of reassignments to the
set of back edges. Thereunto we take aBseiitially empty, and show a way how each
reassignment puts iB a back edge which was not there before. B\ a subset of the set
of all back edges, we have our injection. Our proof is an @agedf two proofs by induction,
whereas outer induction is on reassignments and inner fiotiLfiinds for each reassignment
the back edge to add &

Theorem 3(conjectured to be true in[L]N; < Noedges

Proof. Letr be a reassignment which occurs when assigning a vdtua vertexv fails. As
v is obviously not the initial vertex of the search, igtbe the parent of in search. The
reassignment occurs due to a venereighbor ofv such thag(w) +i = j = g(u1) + g(uz)
for some edg€ui,uy} previously labeled, wherg(u;) < g(u,) without losing of generality.
We will demonstrate that puts a back edge iB which was not there before.

If r is the first reassignment in the whole search and vy, the edge{w, v} is a tree
edge and, from Lemnid 2y;, u,} is the back edge we put By at this time empty. Otherwise,
if r is the first reassignment but=£ v, then{w, v} is the back edge we put B, since{vo, v}
is a tree edge.

If r is not the first reassignment, let's assume by inductionehah reassignment
beforer satisfies the property of having putiha back edge which has not been there yet:

1. If w=vp, then edge{w,v} is a tree edge andy = {u;,uz} is a back edge. Iffp
is already inB whenr happens, it's because of another edgdabeled afterfy but
before{w,v} such that we had unsuccessfully tried to assign the lap) = j to
f1. Analogously, if f; is already inB whenr happens, it's due to another edfe
labeled afterf; but before{w,v} such that we had unsuccessfully tried to assign the
labelh(f;) > j to f2. Inductively, there is an edgk, for somek > 0, which is not in
B whenr happens. Moreover, from Lemrha £, is a back edge, because its label is
h(fx) > j. Therefore fy is the back edge we put B.

2. Finally, if w# vo, then edgeo = {w,Vv} is itself a back edge. Ify is already inB when
r happens, it's because of a reassignment befareen we had tried to assign tdhe
labeli’ < i but it had failed due to an edde # fo for whichh(fy) =g(w)+i' = j’ < j.
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But if f1 is already inB whenr happens, it's because of another edgkabeled afterf;
but beforefy such that we had tried to assignfiothe labeh(f1) = j’. Analogously, if
f, is already irB whenr happens, it's due to another edfgdabeled afterf, but before
fo such that we had tried to assign tgthe labelh(f;) > j’. Inductively, there is an
edgefy, for somek > 0, which is not inB whenr happens. Moreover, from Lemrih 2,
fx is a back edge, because its labdh(gy) > j’. Therefore fy is the back edge we put
in B. O

5 Empirical results

BMZ and BDZ implementations in CMPH do not draw the functiommapping step
as described above. Both use the practical Jenkins hastidns21] instead of tableg, T,
and matrixA. Given a keyx which is a string and a random seed of 32 bits, Jenkins program
compute extremely fast three hash functidpnsl, andJs that mapx to three numbers of 32
bits each. Jenkins hash functions circumvent the problermgdractice, keys being quite
similar to each other, far from uniform distribution assuhie theory. For example, in case
where keys are URLSs, they follow a very specific pattern. Ailes functions use all bits in
x to influence each bit id;(x), they generally map even similar, whilst distinct, keys éoyw
different addresses. BMZ drawing bf andh; is actually drawing of a random seed for two
Jenkins hash functions. BDZ drawinglaf, h; andh; is actually drawing of a random seed
for the three Jenkins hash functions. We extend our deraizdtion strategy for Jenkins
hash functions by ordering all numbers of 32 bits: initiz¢dés defined to ben/3], and
(2%2-1)/3 is the chosen coprime of2which we add (modulo®) to the current seed in
each iteration.

We have tested our deterministic vers@n§BMZ and BDZ by simply making small
changes in the original source codes in CMPH library. Bothinal codes and our variants
have been executed in the same machine, an AMD AIM®500+ with 64 kiB of L1 cache,
512 kiB of L2 cache and 1 GiB of RAM. Running the same algorithany times for same in-
put can be interesting for randomized algorithms, but @sdigr deterministic ones. We have
decided therefore each test case to consist of 50 instaféey sets, and what we present
is the arithmetic average of all 50 obtained results. Bothital and deterministic versions
have been input with the very same 50 key sets, so they couttbimpared fairly. Tests
have been executed over sets with up t@RB000 keys, artificial distinct URLs generated
by a script. Our results are shown in Table 1, where our detéstic versions of BMZ and
BDZ are called respectively D-BMZ and D-BDZ. We have complaret only time, but also

3available aht t p: /7 pr of essor . uf abc. edu. br/ ~j ai r. donadel I 1/ D- BMZ- BDZ. t ar . bz 2!
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number of iterations of mapping step. One can observe tkag ik no significant difference
between our deterministic versions and the original ones.

n= 6,250,000 12,500,000 25,000,000
scheme | iterations | time (s) | iterations| time (s) | iterations| time (s)
BMZz 1.8800 | 304516 | 24400 | 70.6006 | 2.4200 | 1512864
D-BMZ | 23600 | 329100 | 19000 | 651682 | 1.8800 | 1446608
BDZ 1 23.2462 1 47.8154 1 1012546
D-BDZ 1 230818 1 49.0736 1 1024540

Table 1. An empirical comparison between our algorithms and themalgnes

6 Final remarks

Despite of more recent and better results like those in [@h,vte pick up only BMZ
and BDZ schemes to derandomize, though we believe that mplesistrategy can as well
be applied to other randomized hashing schemes. EMZ [1] dnd |2] are practical and
time-efficient minimal perfect hashing algorithms. Morep\BDZ hash functions require a
very small amount of space to be stored. It is about o2 dits per key, a result which
is very close to the tight lower bound of abou#4 bit per key[[13[ 14]. BMZ and BDZ
are randomized algorithms, but we present a simple strétagyemoving all randomness
of both schemes, and the empirical results show to be e@uiv&d the original ones. Our
goal in derandomizing these schemes was not, of coursefamdietter time results, as one
could think. Our contribution to these important hashingesnes is a deterministic behavior.
In particular, executions for the same input always prodheesame output whereas, for
randomized schemes two distinct executions for same irgrupooduce distinct outputs. We
believe this strategy can be useful for developing dynaraghing schemes based on BMZ
and BDZ.

Static hashing schemes, like BMZ and BDZ, construct a hasbtifon given a static
setSwith n keys. A dynamic hashing scheme is a scheme where operaitenssertion
and deletion of keys it§ are available[][3]. Dynamic hashing schemes are very useful t
model data structures, specially duedl) lookup time, in contrast t®(logn) time in data
structures based on trees [9]. A very known dynamic hastéhgme, presented in [22], is
based on the classic deterministic static hashing schergd&Jkthough the dynamic version
is not deterministic. Actually, we cannot have determinidiynamic hashing witto(logn)
lookup time [22], but determinism in the static scheme cdp teebuild the dynamic one.

Notwithstanding running irO(n) expected time, both BMZ and BDZ do not have
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any guarantee of halting (albeit this event has probahiéityding to 0), since drawing of
functionsh; in mapping step is done with replacement. Our determinggisroach also
gives the schemes a theoretical finite worst-case time, lale[Baexposes, because we never
repeat a pair of tablgd7, T) nor a matrixA, according to Propositioh$ 1 (p.164) ddd Z(d. 65).
Notice that, in deterministic BMZ, the worst case is that whe try all(1—0.469)(N+1) =
O(n?-2l) bad pairs of table$Ty, T,) until finding agoodone. For each pair of tables tried,
oneO(n)-time iteration of mapping step is executed, what leads tise®(n?-=+1) worst-
case time to the whole scheme. In deterministic BDZ, on therdbhand, the worst case is
that when we try alp(N + 1) bad matricef\. But p~ 0, and therp(N + 1) = O(1), what
gives theO(n) worst-case time.

Scheme BMZ D-BMZ BDZ | D-BDZ
Best-case time | O(n) O(n) O(n) O(n)
Worst-case time | 4o | O(n?*+1) | 4o | O(n)
Average-case time O(n) O(n) O(n) O(n)

Table 2. Theoretical time complexity comparisons between the selsem

Acknowledgment: We thank Fabiano C. Botelho, who pleasingly answered oulsraad
presented us the BDZ algorithm.
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