
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 26, Num. 3 (2019) 65-74

RESEARCH ARTICLE

Models to evaluate service Provisioning over Cloud
Computing Environments - A Blockchain-As-A-Service
case study
Modelos para o provimento de Serviços em Ambientes de Computação em Nuvem - Um
estudo de caso aplicado a Blockchain como Serviço

Carlos Melo1*, Jamilson Dantas2, Paulo Pereira3, Ronierison Maciel4, Paulo Maciel5

Abstract: The strictness of the Service Level Agreements (SLAs) is mainly due to a set of constraints related
to performance and dependability attributes, such as availability. This paper shows that system’s availability
values may be improved by deploying services over a private environment, which may obtain better availability
values with improved management, security, and control. However, how much a company needs to afford to
keep this improved availability? As an additional activity, this paper compares the obtained availability values
with the infrastructure deployment expenses and establishes a cost × benefit relationship. As for the system’s
evaluation technique, we choose modeling; while for the service used to demonstrate the models’ feasibility, the
blockchain-as-a-service was the selected one. This paper proposes and evaluate four different infrastructures
hosting blockchains: (i) baseline; (ii) double redundant; (iii) triple redundant, and (iv) hyper-converged. The
obtained results pointed out that the hyper-converged architecture had an advantage over a full triple redundant
environment regarding availability and deployment cost.
Keywords: Availability — Blockchain-as-a-Service — Hyper-converged — Virtualization

Resumo: O rigor nos Acordos de Nı́vel de Serviço (ANS) deve-se a um conjunto de restrições nos principais
atributos de desempenho e dependabilidade de sistemas. Este artigo apresenta a avaliação de um desses
atributos: a disponibilidade, bem como, uma relação de custo - benefı́cio para o provimento de serviços nesses
ambientes. Escolhemos modelagem como método para avaliação, em virtude de seu baixo custo e alto nı́vel de
representação. Avaliamos quatro diferentes arquiteturas para o provimento de blockchains como serviço: (i)
baseline, (ii) redundância dupla, (iii) redundância tripla, (iv) hiperconvergente. Os resultados obtidos apontaram
que a arquitetura hiperconvergente apresenta vantagem sobre a arquitetura com redundância tripla em todos os
nós tanto em disponibilidade quanto em custos.
Palavras-Chave: Disponibilidade — Blockchain como Serviço — Hiperconvergência — Virtualização

1,3,4,5Federal University of Pernambuco, Recife, Pernambuco - Brazil
2Federal University of Vale of São Francisco, Salgueiro, Pernambuco - Brazil
*Corresponding author: casm3@cin.ufpe.br
DOI: http://dx.doi.org/10.22456/2175-2745.91814 • Received: 12/04/2019 • Accepted: 02/08/2019
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction
The virtualization technology provided to datacenters and
the possibility to host and manage any service over the Inter-
net is what now is known as the cloud computing paradigm.
As a result, the cloud became an exciting research environ-
ment to refine, test, and develop new technologies, mainly
because its fast adaptation and development. These features
enable the processing, network and storage virtualization into
a single rack, or even into a single machine [1]. The data-
center that follows this full virtualization technology is called
software-defined data center (SDDC) [1] and replaces the

older, scattered and disorganized silo-based architectures.
There are two main roads to reach SDDC: convergence

and hyper-convergence [1]. In both cases, the environments
converge, but in the second one, computing and storage ser-
vices are hosted into a single node, while the first one has
different hardware for each service. The IDC1 predicted a
growth of 60% of the hyper-converged market until 2019, with
3.9 billion dollars on sales [1]. However, what is the benefit of
a hyper-converged infrastructure over a converged one? The
answer to this question is one of the answers that this paper

1IDC: https://goo.gl/NA7E6p

BaaS Provisioning over Cloud Computing Environments

provides.
In this paper, we analyzed a set of environments through

availability models. These models are artifacts that may help
companies and stakeholders to predict and mitigate the im-
pact of some issues over an SLA fulfillment [2]. Also, these
models can be deployed hierarchically to improve system’s
availability through redundancy mechanisms.

As a mean to demonstrate the proposed models’ feasi-
bility, we evaluate four different architectures with two case
studies: (1) hosting a service; and (2) cost-benefit evaluation.
The blockchain-as-a-service was the chosen service due to
the increasing adoption of the blockchain paradigm, which
is a result of the cryptocurrencies valorization and their secu-
rity improvement mechanisms that may change the future of
computing [3], while the cost-benefit evaluation is a survey
analysis that may help stakeholders to choose to stay in a
public cloud computing environment or deploy a private one.

This paper is an extension of [??] and [??], which has
as the primary objective the availability and deployment cost
evaluation of four cloud computing environments managed
and distributed in different ways. The proposed architectures
shared between them the service they are hosting: blockchain-
as-a-service.

The key contributions of this work are the following: (1)
behavioral models for availability evaluation of four different
architectures; (2) System’s availability and deployment cost
evaluation; and (3) establishment of the cost-benefit relation-
ship for the proposed environments. The paper is organized as
follows. Section 2 presents the works that underlie this paper.
Already Section 3 describes system’s availability, blockchain-
as-a-service, and behavioral models. In Section 5, we present
the modeling methodology adopted by this paper. The Section
6 shows the availability models that represents the proposed
environments. In Section 7, we evaluate the model’s feasibil-
ity through some case studies. Finally, the Section 8 shows
the final remarks about the obtained results and the next steps.

2. Related Works
Over the last few years, hyper-converged environments and
blockchain-as-a-service provisioning arose, authors have de-
voted their efforts to study and evaluate performance metrics
related to those themes, in this section, we present the works
that underlie this paper. In [??], we evaluated the availability
of four architectures with no service running over it, and we
show the structural advantages of hyper-converged environ-
ment adoption. Already [??] evaluates the blockchain-as-a-
service deployment over a virtualized environment managed
by docker.

Other authors, such as [4] combined blockchain storage to
construct a personal platform based on privacy. An automatic
access-control protocol that enables blockchain management
was implemented. Through this mechanism, the transactions,
in this case, system’s instructions, do not need to be trusted or
be reevaluated by third parties. Already in [5], an evaluation
of the blockchains’ use and smart contracts to facilitate the

data sharing in an Internet of Things (IoT) envrionment was
made. Also, they pointed out the main issues and the main
advantages of the use of IoT and blockchain combination. In
[6], a framework called Hawk was implemented, aiming to
improve the way that smart contracts work in a blockchain
environment by enabling a company or an user to apply to the
chain without the need to develop the cryptography.

In [7], the authors investigates the availability of functions
for an Ethereum blockchain scenario, they pointed out the
time lost by these functions and their general impact in the
cryptocurrency transactions. Already in work done by [8], the
authors evaluate a blockchain environment and establish the
reliability gradient through EPTM models and Circuit Unit
Importance.

[9] evaluate Mobile Backend-as-a-service through hierar-
chical modeling in two different scenarios: baseline, without
automatic repair mechanism, obtaining a lower availability
than the scenario with automatic repair routine; a sensitivity
analysis was applied, aiming to identify which component
impacts the most on system’s availability. In [10] the au-
thor introduced hyper-convergence in computing and storage
environments. Also, he evaluated the performance and the
scalability characteristics of these architectures through a pro-
totype implementation and deployment of the IBM General
Parallel File System (GPFS). While in [11] an optimized al-
gorithm is proposed, which follows the hyper-convergence as
a mean to maximize the utilization of Tier 0 storage.

In [12], the proposition of an energy-efficient architecture
for SDDC infrastructures is made, the authors evaluate the
heat reuse system through simulation. Finally, in [13], the
authors define the software-defined network (SDN) as a mean
to minimize the expenses and maximize the revenue of data
center resources.

This paper evaluate the deployment cost and proposes
behavioral models for availability evaluation of four different
environments hosting blockchain-as-a-service. To the best of
our knowledge, this has not been considered so far.

3. Background

This section presents the fundamental concepts about availabil-
ity evaluation, system’s modeling, blockchain-as-a-service,
and OpenStack cloud computing environment. These con-
cepts are useful for a good understanding of this paper.

3.1 Availability Evaluation
Dependability is the capability of a system to deliver a set of
trustable services that are observed by outside agents, such as
users and administrators [14]. Usually, system’s dependability
evaluation requires the study of at least one of its six attributes
[15]; It is the case of system’s availability, which evaluates the
probability of a system being available now or in a moment in
the future. In this paper, we evaluate the steady-state availabil-
ity, also called the long-run availability, which is the limit of

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.66/74 • 2019

BaaS Provisioning over Cloud Computing Environments

the availability function as time tends to infinity (Equation 1).

A = lim
t→∞

A(t), t ≥ 0 (1)

As a counterpart to the system’s availability, we may high-
light the system’s downtime; which is measured by the rela-
tionship between the obtained availability value and the aimed
period (hours, minutes, seconds). For example, the system’s
annual downtime is 8760h− (8760h×Availability).

We can reach availability values by many ways, which
go from measurement to modeling. The second method has
as virtues the possibility to provide high-level system’s view
with great flexibility in adapting parameters and achieving
results, besides a lower cost to evaluate, and because of this
modeling was the chosen evaluation method. We usually
classify dependability models in combinatorial (or non-state
space) and state-space models:

• Combinatorial models capture conditions that make
a system fail (or to be working) regarding structural
relationships between the system components.

• State-space models represent the system behavior (fail-
ures and repair activities) by its states and event occur-
rence expressed as rates or distribution functions. These
models allow representing more complex relations be-
tween components of the system than combinatorial
models do.

Reliability Block Diagram (RBD) and Fault Tree (FT) are
among the most prominent combinatorial modeling formal-
ism, whereas Stochastic Petri Nets (SPN), Continuous Time
Markov Chain (CTMC), and Stochastic Automata Networks
are widely used state-space modeling formalism [16, 17, 14,
18]. RBDs and DRBDs are the modeling formalism chosen to
represent the behavior and availability of our proposed system,
these models enable us to evaluate an environment precisely
by establishing a relationship between software and hardware
components. Models are easier to evaluate and costs less than
experiments.

The DRBD is an extension of the traditional RBDs that
considers dependencies on dynamic systems, priority between
repairs, and resource sharing [19] [20]. If the modeled system
is too big to an SPN or the SPN relations (arcs and transition
annotations) are too complicated, the SPN graphical notation
loses its visual appeal, so the DRBD becomes a solution.

The DRBD’s attributes are the modeling constructs: SDEP
(state dependency) block and SPARE block. In this work, we
map DRBDs into SPNs, as in Figure 1 that represents an
SDEP block.

The SDEP block can connect a source block to one or
more target blocks. If this block enters into failure state, then
all target blocks will fail as well. The Figure 1, shows an im-
mediate transition called TRIGGER, that moves a token from
the place C2 UP to the place C2 DOWN. The inhibitor arc
connected to the TRIGGER transition and the C1 UP place

Figure 1. SDEP block conversion to SPN

grant that this transition only fires if the source block fails,
which leads to the failure of all connected target components.

4. Software Platform Infrastructure
The Hyperledger is an open consortium hosted by Linux Foun-
dation that aims to improve the advances in blockchain tech-
nologies2. Among the many projects that are hosted by the
Hyperledger is the Hyperledger Cello. The Hyperledger Cello
is a blockchain module able to provide on-demand blockchain.

Already the OpenStack3 is the cloud computing platform
chosen to provide the service, due mainly to its ability to adapt
to plugins for the provision of a hyper-converged infrastruc-
ture with Ceph4.

The OpenStack is an open source platform and a well es-
tablished environment to test and provide any service through
the Internet, one of the main reasons to choose this platform
is the Ceph plugin, witch can provide hyper-converged envi-
ronments, that help to control pools of computing, storage,
and networking resources throughout a data center. Below,
we describe the main components of the OpenStack platform.

The Keystone is the identity service used by OpenStack
for security, authentication and high-level authorization for
each of the OpenStack components. The Nova Compute is
the component responsible for providing computing power
on OpenStack cloud computing platform. The Nova Com-
pute manages the virtualization service (Docker) to virtual
resources provisioning. Already the Neutron (Networking)
implements OpenStack’s “network as a service” model, and
it is an OpenStack core component, which means that it
must be present in all infrastructures. The broker called Rab-
bitMQ implements the Advanced Message Queuing Protocol
(AMQP). The Network Time Protocol (NTP) keeps time be-
tween servers synchronous and the Database store services
information. All these impacts on the virtual machines (VM)
provision.

For the storage service, we may have two different organi-
zations, the first one known as typical contains the OpenStack

2Hyperledger Cello: https://goo.gl/7baUzo
3OpenStack: https://goo.gl/jNnUe2
4Red Hat Ceph: https://goo.gl/vjXW15

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.67/74 • 2019

BaaS Provisioning over Cloud Computing Environments

Glance, which is the image service that provides image up-
load and data assets. Swift is the Object Store project that
offers cloud storage software for data store and retrieves. Al-
ready the second organization, characterized by the hyper-
convergence environment has the Ceph storage system, which
reduces the need for an external storage device or machine,
by providing the storage service into the compute node.

The Figure 2 presents how we organize the OpenStack
main components of traditional and hyper-converged architec-
tures: Controller, Compute node and Storage.

Controller Node

Compute Node

Storage Node

Hardware
Operating System
Keystone
Networking
Nova
Database
RabbitMQ
Glance
Docker

Hardware
Operating System
Networking
Nova
Docker
Ceph

Hardware
Operating System
Swift

Watchdog
RestServer
Dashboard

nginx
Node.js
Python

Figure 2. OpenStack Service Layout

The grey and black components represent the minimum
amount of resources that must be entirely working to accom-
plish the service provisioning in traditional architecture. In
this paper, we evaluate four architectures; the baseline ar-
chitecture has only one of each of these components, while
the double redundant has two of each resource, the triple
redundant has three of each; finally, the hyper-converged
environment does not have a storage node, both compute and
storage in the same node.

With the Red Hat Ceph and the storage service virtual-
ization approach, it is possible to obtain similar availability
values with up to 33% fewer components than a triple full
redundant architecture [??]. At a hyper-converged environ-
ment, the storage services are deployed on the compute nodes,
which means that we do not need an external storage device
anymore.

Already to host the Hyperledger Cello and manage the
blockchains we need the following components to be work-
ing: the Watchdog, which is the responsible for monitors the
blockchain’s service and the system’s status. The RestServer
that makes the environment provision, orchestration, and task
management. The Dashboard provides the environment man-
agement for system’s administrators. The nginx is a reverse
proxy used by the Hyperledger Cello to web performance
improvement. While the Node.js is a lightweight JavaScript
runtime used by Cello to improve provisioning. Python runs
over the host and provides the means to execute Watchdog,
RestServer, and the Dashboard into Controller Node.

Next, we present the followed modeling methodology that
enables a person or company to reproduce and improve the
proposed models to obtain better availability values aiming
the SLA compliance.

5. Modeling Methodology
Survey all the hardware and software resources available and
needed to deploy the proposed environments is the first step
to accomplish the availability evaluation process. Generally
speaking, after listing the required resources and their relation-
ship with the system’s deployment, we can create a model that
represents the environment’s behavior. The Figure 3 shows an
organization chart that summarizes the strategy used in this
paper.

1
System Understanding

2
Metrics Definition

3
Environment DefinitionInput Parameter's Survey

4

Design Availability Models

5 6
Availability Evaluation

Generate Alternative
Architectures

7
Satisfactory

Results

8
Cost
Survey

Figure 3. System’s Evaluation Methodology

1. System Understanding: characterized by the identifi-
cation of system components, applications, function-
alities and acquisition costing for each required equip-
ment;

2. Metric Definition: by knowing how the system works,
we can choose the metrics of interest to evaluate; in our
case, the system’s availability;

3. Environment Definition: based on the obtained infor-
mation from the system understanding step, we defined
an architecture containing the minimum necessary com-
ponents to blockchain-as-a-service delivery, which is
called Baseline Architecture;

4. Input Parameter Survey: through the baseline sce-
nario we can survey the mean time to failure (MTTF)
and mean time to repair (MTTR) of the components
and applications inherent to the proposed infrastructure;

5. Design Availability Models: in this step it is made
the combinatorial and state-based models proposition
for availability evaluation based on the architectures
behavior and component survey;

6. Availability Evaluation: with the availability models
that represent the architectures behavior, we can evalu-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.68/74 • 2019

BaaS Provisioning over Cloud Computing Environments

ate the system’s availability and obtain the values that
can be used to propose better alternative architectures;

7. Generate Alternative Architecture: from the obtained
availability evaluation results from Baseline Architec-
ture we’ve created three other architectures and clas-
sify them as double redundant, converged and hyper-
converged; these architectures propositions aim to im-
prove the baseline architecture obtained values, each
one has a particularity that is going to be explained later
in this paper.

8. Cost Evaluation: based in the main components acqui-
sition values in USD, and the proposed architectures
alignments, the deployment costs for each environment
is surveyed, this value is compared with system’s down-
time, and provide a cost-benefit relationship evaluation.

The satisfactory results derive from the obtained availabil-
ity values, and the deployment costs evaluation, which must
be consistent with similar parameters of a private and real
cloud computing environment.

6. Proposed Models
This section presents the behavioral models and describes
the proposed architectures and how the main components are
related to each other. The baseline architecture contains the
minimum requirements for service deployment: Controller,
Compute, and Storage.

The second environment has double redundancy, meaning
two controllers, two compute nodes and two storage devices.
The third architecture has triple redundancy, which implies
into three of each component. Already for the fourth and
last environment, we propose an OpenStack Hyper-converged
architecture; this architecture unifies the compute node and
the storage device into a single machine to reduce expenses.

Dynamic Reliability Block Diagrams (DRBDs) and Relia-
bility Block Diagrams (RBD) were used to represent the rela-
tionship between the controller, compute and storage nodes,
as well as their hardware and software components of the four
proposed environments.

6.1 Baseline Architecture
The OpenStack controller’s DRBD model has some depen-
dencies. The controller machine presented in Figure 4, con-
tains HW, an OS, Nova manager, OpenStack subcomponent,
Python, NodeJS, nginx, Docker, Dashboard, RestServer, and
Watchdog. All these components must be working for ser-
vice provisioning. The availability function that describes this
model is the result of the probability of HW ∧ OS ∧ Mon-
goDB ∧ Keystone ∧ Python ∧ NodeJS ∧ nginx ∧ Docker
∧ Dashboard ∧ RestServer ∧ NTP ∧ RabbitMQ ∧ Nova ∧
Glance ∧ Neutron being operational.

The Network (Neutron), Nova, and Docker are Keystone
dependant components, while the NTP server and RabbitMQ
broker are vital resources for the environmental management.

The Figure 5 shows the compute node DRBD model. The
component availability is equal to the probability of HW ∧
OS ∧ Neutron ∧ Nova ∧ Docker being operational.

Figure 5. OpenStack Compute Node DRBD model

The last component is the object storage device (OSD),
represented by the DRBD in Figure 6, and contains HW, OS
and the Swift object storage. The component’s availability is
equal to the probability of HW ∧ OS ∧ Swift being into an
UP state.

HW OS

SDEP

Begin End
Swift

SDEP

Figure 6. OpenStack Storage DRBD model

By combining the three DRBDs that represents the base-
line architecture, we have the baseline RBD with three blocks,
each one is a component subsystem as in Figure 7. All the
three blocks must be operational for service provisioning. All
the three blocks must be operational in the OM: Controller ∧
Compute ∧ Storage.

Figure 7. Baseline Architecture RBD

6.2 Double Redundant Architecture
In the baseline scenario, if any of the components fail the
service will fail as well. To reduce the unavailability period
we propose a model with double redundant in Figure 8. The
logic function that describes the operational mode (OM) of the
double redundant environment is expressed by: (Controller
1 ∨ Controller 2) ∧ (Compute 1 ∨ Compute 2) ∧ (OSD 1 ∧
OSD 2).

Figure 8. RBD for Double Redundant Architecture

In this second RBD, all components previously presented
have an active-active redundancy, sharing all the work and
services with each other. If any component enters into a failure
state, the other is going to absorb the workload performed
by its counterpart with at least a half of the original capacity,
because two components imply in a 100% of the resources

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.69/74 • 2019

BaaS Provisioning over Cloud Computing Environments

HW OS Dashboard RestServer WatchdogDockernginxNodejsPython

SDEP

Begin End
MongoDB KeystoneRabbitMQ NovaNTP Neutron

SDEP

SDEP

SDEP

SDEP

SDEPSDEP SDEP

SDEP

SDEP

Figure 4. OpenStack Default Controller Node Model

available and a half of it (one machine)imply in at least 50%
of the systems entire capacity, if two of the same component
stop to working then the entire system becomes unavailable.

6.3 OpenStack Triple Redundant Architecture
The OpenStack converged architecture has nine physical ma-
chines, with triple active-active redundancy, this architecture
should have no single point of failure. The Figure 9 presents
the RBD that represents this environment. The logic function
that describes the OM for the triple redundant environment is
expressed by: (Controller 1 ∨ Controller 2 ∨ Controller 3) ∧
(Compute 1 ∨ Compute 2 ∨ Compute 3) ∧ (OSD 1 ∧ OSD 2
∧ OSD 3).

Figure 9. OpenStack Triple Redundant Model

A triple redundant mode must have at least one controller,
one compute node, and one storage device available or op-
erational to accomplish service provisioning, as well as the
maintenance of the virtual machines, images, and user data.

6.4 Hyper-converged Architecture
To turn an OpenStack cloud computing environment into a
hyper-converged one, we must provide a way to maintain the
data safe without an external storage device, and with similar
availability values to the triple redundancy scenario. The Red
Hat Ceph is a tool that accomplishes it; the Ceph has a monitor
on the controller, which implies in some modifications to the
DRBD presented in Figure 10. The component’s availability
is measured by the probability of HW ∧ OS ∧MongoDB ∧
Keystone ∧ Python ∧NodeJS ∧ nginx ∧Docker ∧Dashboard
∧ RestServer ∧ Ceph Monitor ∧ NTP ∧ RabbitMQ ∧ Nova
∧ Glance ∧ Neutron being into an UP state.

The Ceph monitor is responsible for providing control
over the Ceph on compute nodes, and analyzing where virtual
machine’s object data is going and where it is if a compute
node fails. It main dependency is the HW, as any of applica-
tions already presented. The Figure 11 shows the DRBD for
the compute node, now containing Ceph Object Storage. The

component availability is equal to the probability of HW ∧
OS ∧ Neutron ∧ Nova ∧ Docker ∧ Ceph being operational.

Figure 11. Hyper-converged Compute/OSD

The Docker maintains the Ceph object storage. For the
hyper-converged environment, we propose another RBD in
Figure 12. The logic function that describes the OM of
the hyper-convergent environment is expressed by: (Con-
troller Monitor 1∨Controller Monitor 2∨Controller Monitor
3) ∧ (Compute OSD 1 ∨ Compute OSD 2 ∨ Compute OSD
3).

Figure 12. RBD for Hyper-converged Environment

With six blocks, three controllers/monitors and three com-
puting/storage nodes with no single point of failure, and with
user’s data safe, self-healing mechanism, and 33% fewer com-
ponents than a full triple redundant converged environment.

7. Case Study

This section provides two case studies that demonstrate how
feasible the proposed models are: (1) Availability and (2)
Cost-Benefit evaluation of four different architectures. The
first thing to accomplish our tasks is to obtain the system’s
input values to perform the availability evaluation. Those
values can be seen in Table 1, they were extracted from [21]
[9] [22].

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.70/74 • 2019

BaaS Provisioning over Cloud Computing Environments

HW OS Dashboard RestServer WatchdogDockernginxNodejsPython

SDEP

Begin End
MongoDB KeystoneRabbitMQ NovaNTP Neutron

SDEP

SDEP

SDEP

SDEP

SDEPSDEP SDEP

SDEP

SDEP

Ceph

Figure 10. Hyper-converged Controller/Monitor

Table 1. Resources Input values
Component MTTF MTTR
HW 8760 h 100 min
OS 2893 h 15 min
MongoDB 1440 h 20 min

Python, NodeJS, nginx
Dashboard, RestServer,
Nova, Neutron, Keystone,
RabbitMQ, NTP, Glance,
Watchdog, Swift, Ceph

788.4 h 1 h

Docker 2990 h 1 h

7.1 Case Study I - Availability Evaluation
The first case study is the evaluation of proposed models’
availability. The baseline architecture was the first one to
be evaluated, which made possible to extract the availability
values for each DRBD sub-model (Controller, Compute Node,
and Storage) by inserting each presented input values on the
corresponding block. Table 2 shows the availability results
for each sub-model and for the cloud RBD model.

Table 2. Baseline Architecture Results
Model Availability (%) Downtime (h)
Controller 96.7285 286.58
Compute 99.4458 48.54
Storage 99.7936 18.08
Baseline 95.9987 350.51

The obtained results point out the availability of 96.72%
for the controller’s DRBD, which is the machine with more
components, already the compute node had availability of
99.44%, while the storage reached 99.79%. The RBD com-
posed by the three DRBDs representing the proposed environ-
ment had availability of 95.99%, meaning an annual downtime
of 350.51 hours or more than eighteen entire days.

Based on the baseline architecture obtained values, we
propose three other architectures. The Table 3 presents the
availability results for each of these alternative architectures.

Table 3. Alternative Architectures Results
Model Availability (%) Downtime (h)
Double Redundant 99.8932 10.5
Triple Redundant 99.9964 0.31
Hyper-converged 99.9989 0.09
Baseline 95.9987 350.51

The architecture of greater availability is the hyper-converged
one. It is worth noting that in this structure we have triple
redundancy in Compute/OSD and controller nodes, and the

obtained results pointed out an annual downtime of fewer than
six minutes. Also, the double and full triple redundant models
have lower availability than the hyper-converged one.

The architecture with double redundancy on all compo-
nents has an annual downtime of 10.5 hours, which is a rea-
sonable result compared to the obtained from the baseline
architecture, while the full triple redundant model has almost
20 minutes of annual downtime.

7.2 Case Study II - Cost-Benefit Evaluation
A two stages survey characterizes the deployment cost analy-
sis. At survey’s first stage the necessary machines and storage
devices to provide a cloud computing environment were de-
fined.

To the survey’s second stage, all the acquisition cost for
each component individually was analyzed. By consulting
Brazilian and North American websites5, the lowest value of
each architecture element in the period from 6 to June 13Th,
2018 was selected.

The server chosen to our environment is the Dell Pow-
erEdge T320 servers, with Intel Xeon E5-2420, six physical
cores, and 12 threads, 1 TB of storage and 24 GB RAM6.
Already the storage mechanism is the Iomega StorCenter Pro
ix4-200d 8 TB (4 X 2 TB) Network Attached Storage Server7.

The third step is characterized by the analysis of the techni-
cal specification of each component in search of energy power
values, aiming to calculate the energy cost per unit for one
year, where these components would be functional 24 hours a
day seven days a week. The cost of kilowatt time in Recife,
Brazil, in March 2017 was 58 cents of real, converted to 16
cents of a dollar. In possession of these data, we calculated
the kWh amount consumed by each device in one year by
Equation 2, and multiply the result by the kWh value.

kWh =
Power(W)×No.h/Day×No.DaysPerYear

1000
(2)

where Power stands for equipment required power, and No.
h/Day for Number of hours per day that the equipment is used.
Table 4 shows the relationship between components and their
acquisition costs, power and annual energy cost.

5Amazon https://goo.gl/kC8yuj
6Dell Website https://goo.gl/XmTbwF
7Iomega Website https://goo.gl/f8xF1N

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.71/74 • 2019

BaaS Provisioning over Cloud Computing Environments

Table 4. Relationship between components, power and cost
Component Acq. (USD) Potency (W) Energ. (USD)
Server 1209.82 100 140.16
Switch 119.00 6.9 9.67
Storage 699.00 63.07
Air conditioning 490.83 1080 1513.73
Monitor 191.95 70 98.11
Keyboard 5.71 - -
Mouse 2.55 - -
Personal Computer 313.27 100 140.16
Rack 416.73 - -

Table 5. Estimated Cost for each architecture
Architecture Energ. (USD) Acq. (USD) Total (USD)
A1 2.105,06 4.658,58 6.763,74
A2 2.448,45 7.777,32 10.225,77
A3 2.791.84 10.895,96 13.687,8
A4 2.602,63 8.798,62 11.401,59

Table 5 presents the overall acquisition costs for each pro-
posed architecture where the column that is the total value it
is the sum of acquisition costs (Acq.) and electricity expenses
(Energ.) for each one.

There are some fixed expenses for each architecture; this
expenditure corresponds respectively to the switch, air condi-
tioning, monitor, keyboard, mouse, rack and the personal com-
puter needed to mount and access the infrastructures from the
administrator side, this expense remains estimated in 1540.04
dollars. Another fixed expense is the energy annual con-
sumption of these components; which is estimated in 1761.67
dollars.

To determine the architectures with the best cost-benefit
relationship, we must define what is the benefit we are seeking
is. For this work, we long for an ideal value between downtime
and deployment and maintenance cost. However, they are
different greatness, in order to compare them a normalization
process put them into the same interval: 0 and 1. Equation 3
presents the normalization process conducted.

The architecture with the highest cost is the triple redun-
dant converged one, which for its implementation and op-
eration over a year it presents an expense of US$13.687,80
dollars, a value US$6.924,06 dollars higher than the architec-
ture with the lowest cost, which is the baseline.

The double redundant architecture has a deployment cost
US$1.175,82 dollars lower than the architecture with hyper-
convergence, with an annual downtime 116 times higher than
the obtained from the hyper-converged model, as seen in
Figure 5.

To determine the architectures with the best cost-benefit
relationship, we must define which the benefit we are seeking.
For this work, we expect the ideal value between downtime
and cost. However, they are different greatness, so we need
to normalize and put them in the same interval: 0 and 1.
Equation 3 presents the normalization process conducted.

NormalizeXY =
NumX−MinNumX

MaxNumX−MinNumX
(3)

where X = Cost, Downtime, Y = Architecture: A1, A2,
A3, A4, MinNumX = Minimum value for architectures and
MaxNumX = Maximum value for architectures where A1
stands for Baseline, A2 for the double redundant environment,
A3 is for the triple redundant scenario, while A4 corresponds
to the hyper-converged architecture.

Now in possession of the normalized cost and downtime
values, we must relate them somehow, so we use the Eu-
clidean distance, the architecture with less distance from
the origin tends to be the best one. The distances calcula-
tion may be done by the following equation: DistanceZ =√

MNCost2 +MNDowntime2, where Z is for architecture and
MN for the metric, either Normalized Cost or Normalized
Downtime. The Ranking for the relationship between cost
and downtime appears in Table 6.

Table 6. Architecture Ranking
Rank Architecture Euclidean Distance

1st A2 0.50
2nd A4 0.58
3rd A1 0.71
3rd A3 0.71

The ranking showed that the architecture A2, with double
redundancy, has the best relationship between deployment
cost and system’s downtime. This architecture does not have
the higher availability value or the worst price, but thanks
to the normalization and distance methods we can define it
as the best cost-benefit relationship. The last place goes for
architectures A1 and A3, while one has the best cost and
the worse downtime baseline; the other one has the inverse
relationship triple redundant environment.

The feasibility of the results depends on the administrator
needs, for example, a higher downtime implies in a lower
deployment cost, as well as a higher deployment cost im-
plies into a lower downtime, which is the case for the triple
redundant environment in counterpart to the baseline archi-
tecture. Also, we can highlight the two other architectures,
because they can be used as an availability midterm and offer
a better cost-benefit relationship, these architectures are the
hyper-converged and double redundant ones.

It is important to mention that the proposed models and
obtained results are generalized through parameterization,
which means that if your environment or datacenter has a
higher or fewer amount of components the models can be
adjusted to fit the company reality.

8. Conclusions and Future Works
This paper proposed and evaluated the availability of blockchain-
as-a-service provisioning over four different architectures.
Also, the cost-benefit relationship based on the deployment
cost and annual downtime was established.

By modeling the proposed environments hierarchically
through Dynamic Reliability Block Diagrams (DRBDs) and
Reliability Block Diagrams (RBD), we were able to represent

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.72/74 • 2019

BaaS Provisioning over Cloud Computing Environments

the behavior of each proposed architecture and obtain artifacts
to help cloud computing service providers and stakeholders.

It is important to highlight that the obtained results showed
that the hyper-converged architecture has the higher availabil-
ity and the second best cost-benefit relationship, while the
baseline architecture has the higher downtime but the lowest
deployment cost. As for future works, we intend to provide
performability studies and evaluate the impact of reading
workloads on the environment, as well as the application of a
sensitivity analysis technique to determine how much does the
components MTTF and MTTR impacts in the overall system’s
availability.

Author contributions
• Carlos Melo: main author.

• Jamilson Dantas: co-author, helped with the modeling
formalisms.

• Paulo Pereira: co-author, helped to establish the cost-
benefit relationship.

• Ronierison Maciel: co-author, helped with sensitivity
analysis.

• Paulo Maciel: co-author, research supervisor, orchestra-
tion and proof reading.

References
[1] HAAG, M. Hyper-Converged Infrastructures for DUM-
MIES. [S.l.]: John Wiley & Sons, Inc., 2016.

[2] MATOS, R. et al. Redundant eucalyptus private clouds:
Availability modeling and sensitivity analysis. Journal of Grid
Computing, v. 15, n. 1, p. 1–22, Mar 2017. Disponı́vel em:
〈https://doi.org/10.1007/s10723-016-9381-z〉.
[3] GUPTA, M. Blockchain for DUMMIES. [S.l.]: John Wi-
ley & Sons, Inc., 2017.

[4] ZYSKIND, G.; NATHAN, O.; PENTLAND, A. . Decen-
tralizing privacy: Using blockchain to protect personal data.
In: 2015 IEEE Security and Privacy Workshops. [S.l.: s.n.],
2015. p. 180–184.

[5] CHRISTIDIS, K.; DEVETSIKIOTIS, M. Blockchains
and smart contracts for the internet of things. IEEE Access,
v. 4, p. 2292–2303, 2016.

[6] KOSBA, A. et al. Hawk: The blockchain model of cryp-
tography and privacy-preserving smart contracts. In: 2016
IEEE Symposium on Security and Privacy (SP). [S.l.: s.n.],
2016. p. 839–858.

[7] WEBER, I. et al. On availability for blockchain-based
systems. In: 2017 IEEE 36th Symposium on Reliable Dis-
tributed Systems (SRDS). [S.l.: s.n.], 2017. p. 64–73.

[8] XIAO, J. et al. Blockchain architecture reliability-based
measurement for circuit unit importance. IEEE Access, v. 6, p.
15326–15334, 2018.

[9] COSTA, I. et al. Availability evaluation and sensitivity
analysis of a mobile backend-as-a-service platform. Journal
Quality and Reliability Engineering International, 2015.

[10] AZAGURY, A. C. et al. Gpfs-based implementation of
a hyperconverged system for software defined infrastructure.
IBM Journal of Research and Development, v. 58, n. 2/3, p.
6:1–6:12, March 2014.

[11] U, A. et al. The efficient use of storage resources in
san for storage tiering and caching. In: 2016 2nd Interna-
tional Conference on Computational Intelligence and Net-
works (CINE). [S.l.: s.n.], 2016. p. 118–122.

[12] TANIGUCHI, Y. et al. Tandem equipment arranged ar-
chitecture with exhaust heat reuse system for software-defined
data center infrastructure. IEEE Transactions on Cloud Com-
puting, v. 5, n. 2, p. 182–192, April 2017.

[13] ZHANG, Y. et al. Vdc embedding scheme based on vir-
tual nodes combination in software defined data center. In:
2016 IEEE Advanced Information Management, Communi-
cates, Electronic and Automation Control Conference (IM-
CEC). [S.l.: s.n.], 2016. p. 931–935.

[14] MACIEL, P. et al. Dependability modeling. In: Perfor-
mance and Dependability in Service Computing: Concepts,
Techniques and Research Directions. [S.l.: s.n.], 2011.

[15] AVIŽIENIS, A. et al. Fundamental Concepts of Depend-
ability. University of Newcastle upon Tyne, Computing Sci-
ence, 2001. (Technical report series). Disponı́vel em: 〈https:
//books.google.com.br/books?id=cDkmGwAACAAJ〉.
[16] MALHOTRA, M.; TRIVEDI, K. Power-hierarchy of
dependability-model types. Reliability, IEEE Transactions on,
v. 43, n. 3, p. 493–502, Sep 1994.

[17] SOFTWARE, I. Reliability Block Diagram. 2007.
Http://www.reliabilityeducation.com/rbd.pdf. [Online; ac-
cessed 26-September-2015].

[18] GARG, S. et al. Analysis of software rejuvenation using
markov regenerative stochastic petri net. In: Proc. In: Sixth
International Symposium on Software Reliability Engineering,
(ISSRE’95). Paderborn: [s.n.], 1995. p. 180–187.

[19] DISTEFANO, S.; XING, L. A new approach to modeling
the system reliability: dynamic reliability block diagrams. In:
RAMS ’06. Annual Reliability and Maintainability Symposium,
2006. [S.l.: s.n.], 2006. p. 189–195.

[20] XU, H.; XING, L.; ROBIDOUX, R. Drbd: Dynamic
reliability block diagrams for system reliability modelling. In-
ternational Journal of Computers and Applications, v. 31, n. 2,
p. 132–141, 2009. Disponı́vel em: 〈http://www.tandfonline.
com/doi/abs/10.1080/1206212X.2009.11441934〉.
[21] DANTAS, J. et al. Models for dependability analysis of
cloud computing architectures for eucalyptus platform. Inter-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.73/74 • 2019

https://doi.org/10.1007/s10723-016-9381-z
https://books.google.com.br/books?id=cDkmGwAACAAJ
https://books.google.com.br/books?id=cDkmGwAACAAJ
http://www.tandfonline.com/doi/abs/10.1080/1206212X.2009.11441934
http://www.tandfonline.com/doi/abs/10.1080/1206212X.2009.11441934

BaaS Provisioning over Cloud Computing Environments

national Transactions on Systems Science and Applications,
v. 8, p. 13–25, 2012.

[22] CAMPOS, E. et al. Stochastic modeling of auto scaling
mechanism in private clouds for supporting performance tun-
ning. In: Proceedings of the IEEE Int. Conf. on Systems, Man,
and Cybernetics (SMC’15). Hong Kong, China: [s.n.], 2015.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 26 • N. 3 • p.74/74 • 2019

	Introduction
	Introduction
	Related Works
	Background
	Availability Evaluation

	Software Platform Infrastructure
	Modeling Methodology
	Proposed Models
	Baseline Architecture
	Double Redundant Architecture
	OpenStack Triple Redundant Architecture
	Hyper-converged Architecture

	Case Study
	Case Study I - Availability Evaluation
	Case Study II - Cost-Benefit Evaluation

	Conclusions and Future Works
	References

