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Sleep Stages Classification Using Spectral Based
Statistical Moments as Features
Classificação de Estágios do Sono Utilizando Como Atributos os Momentos
Estatı́sticos Calculados Com Base Em Componentes Espectrais

Eduardo T. Braun1*, Thiago L. T. da Silveira2, Alice J. Kozakevicius3, Cesar R. Rodrigues1 and
Giovani Baratto1

Abstract: In the pursuit of portable, efficient and effective sleep staging systems, researchers have been
testing a massive number of combinations of EEG features and classifiers. State of the art sleep classification
ensembles achieve accuracy in the order of 90%. However, there is presently no consensus regarding the
best set of features for identifying sleep stages with a single EEG channel, leading researchers to modify the
feature selection according to the number of classification stages. This paper introduces a reduced set of
frequency-domain features capable of yielding high classification accuracy (90.9%, 91.8%, 92.4%, 94.3% and
97.1%) for all 6- to 2-state sleep stages. The proposed system uses fast Fourier transform (FFT) to convert data
from Pz-Oz EEG channel into the frequency domain. Afterwards, eight statistical features are extracted from
specific frequency ranges associated to brain rhythms, feeding a random forest classifier.
Keywords: sleep stage classification — random forest — FFT — statistical moments

Resumo: Na busca por sistemas portáveis, eficientes e efetivos para classificação de sono, pesquisadores têm
testado um grande número de combinações de atributos de sinais EEG e classificadores. O estado da arte
dos aplicativos de classificação para estágios de sono atinge taxas de acerto na ordem de 90%. Contudo, não
existe um consenso em relação ao melhor grupo de atributos para identificar estágios de sono em sinais EEG
de um único canal, levando pesquisadores a modificar a seleção dos atributos de acordo com o número de
estágios a serem classificados. Este trabalho apresenta um conjunto reduzido de atributos, capaz de produzir
uma classificação com taxas elevadas de acerto (90.9%, 91.8%, 92.4%, 94.3% and 97.1%) para todos os
agrupamentos de estágios de sono (de 6 a 2 estágios). O sistema proposto utiliza a transformada rápida de
Fourier (FFT) para converter os dados do canal de EEG Pz-Oz para o domı́nio da frequência. Posteriormente,
oito atributos estatı́sticos são extraı́dos de faixas de frequência especı́ficas associadas a ritmos cerebrais,
alimentando um classificador do tipo floresta aleatória.
Palavras-Chave: classificação de estágios de sono — floresta aleatória — FFT — momentos estatı́sticos
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1. Introduction

Monitoring the behavior of human sleep through polysomnog-
raphy (PSG) allows experts to diagnose important sleep re-
lated disorders such as apnea, insomnia and narcolepsy [1].
This monitoring task is currently performed by visually in-
specting polysomnographic recordings such as electroocu-
logram (EOG), electromyogram (EMG), electrocardiogram
(ECG) and electroencephalogram (EEG), in which character-
istic waveform patterns to each sleep stage are associated [2].

Among non-invasive techniques, EEG is considered one of
the most reliable source for sleep staging [3], supporting an in-
creasing number of works [4, 5, 6, 7]. Their main attempts are
both to enhance classification performance and reducing PSG
acquisition channels, seeking highly accurate and efficient
portable sleep classification systems.

According to the Rechtschaffen and Kales’ (R&K) rec-
ommendations [8], short time EEG intervals, called epochs,
can be classified as awake (W) or one of the following five
possible sleep stages, labeled as S1, S2, S3, S4 and rapid
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eye movement (REM). Another recognized guideline for the
human sleep classification was proposed by the American
Academy of Sleep Medicine (AASM) [2], defining instead
5 stages of sleep, in which S3 and S4 are merged into the
slow wave sleep (SWS) state [9]. When joining S1 and S2
into a single S1/S2 stage, a group of 4 states is obtained: W,
S1/S2, SWS and REM. The 3-state sleep stage classification
considers S1/S2 and SWS as a unique state, namely non-rapid
eye movement (NREM). Finally, when REM and NREM are
grouped together, classification is performed into 2 stages: W
and sleep (SLP) [7].

Both standards, R&K and AASM, address directives based
on certain waves and events (as well as their durations) within
the recorded signal. According to Moser et al. [9], the sleep
stages are equivalent in both standards, which allows a com-
parison between the resulting R&K and AASM classifications.

Independently of the chosen classification standard, the
sleep scoring procedure is a time consuming process [10],
involving the analysis of a huge amount of data related to
whole night recordings. According to Ronzhina et al. [11],
8 hours of recorded signal demand from 2 to 4 hours of
visual analysis. Since the introduction of the R&K stan-
dard, a variety of computational methodologies has been pro-
posed [4, 12, 13, 14, 11, 7] with the objective of supporting
automatic identification of sleep stages. Such methods are
usually based on: EEG preprocessing, feature extraction and
classification.

In the current work, as in [4, 15, 16], the EEG preprocess-
ing is performed through the application of the fast Fourier
transform (FFT) [17] on only one channel of the many pos-
sibilities of a PSG, namely the Pz-Oz channel. Thus, as one
relevant contribution, the proposed sleep staging method relies
on the selection of a reduced and fixed set of spectral-based
features, which here are the first, third, and fourth statistical
moments (mean, skewness and kurtosis, respectively) from
Fourier coefficients corresponding to sleep-related frequen-
cies of the brain (delta, theta, alpha, sigma, beta, and gamma).
Unlike here, in other works [4, 11, 7], different feature sets are
considered depending on the number of stages to be classified.
The classification procedure itself is performed by a random
forest, which is considered in [12, 13] also in the context of
brain pattern classification.

The remainder of this paper is organized as follows. A
concise review of the literature, presenting some basic con-
cepts of this field and addressing state of the art works, is
given in Section 2. The proposed methodology is detailed in
Section 3. In Section 4, the achieved results are presented,
discussed and compared to those of well established studies.
Finally, some conclusions are drawn in Section 5.

2. Related Work
R&K and AASM standards give directives to classify the
sleep mainly based on the form and duration of the waves in
EEG signals, i.e. the brain rhythms. Table 1 presents those
rhythms that are known to be related to sleep events [8]. The

delta rhythm (0.5–4 Hz) appears more intensely during the
S3 and S4 stages, presenting 20–50% and more than 50%,
respectively, of the spectrum energy [11]. When people fall
asleep, the theta rhythm (4–8 Hz) increases while the alpha
rhythm (8–13 Hz) decreases [18]. Sigma oscillations occur
mainly during S2 stage [19]. Corsi-Cabrera et al. [20] claim
that the beta rhythm (13–30 Hz) is primarily associated to the
awake stage. Finally, the gamma rhythm (30–80 Hz) is related
to the working memory and attention [21] and, thus, arises
mainly during the awake stage.

Table 1. Brain rhythms and associated frequency ranges.
Brain rhythm Frequency range (Hz)

Delta 0.5 – 4

Theta 4 – 8

Alpha 8 – 13

Sigma 11 – 15

Beta 13 – 30

Gamma 30 – 80

Based on the sleep characterizations defined by R&K and
AASM, several computational methodologies were proposed,
aiming to assist the sleep experts’ task of scoring, respect-
ing the chosen standards. Those methods invested efforts on
the information sources (e.g. PSG channels selection), on
the preprocessing step (e.g. data normalization), on the fea-
ture extraction method (e.g. domain transformation), on the
extracted features themselves, and, of course, on the classifi-
cation algorithms. For a comparative review between state of
the art methods regarding preprocessing, number of channels,
domain, feature selection, and classifiers, the reader can refer
to [22].

Krakovská and Mezeiová [23] computed up to 74 fea-
tures from EEG, EMG, EOG and ECG signals, selected a
subset of them and applied for classification an artificial neu-
ral network (ANN). Charbonnier et al. [24] went in the same
direction of [23], increasing the final accuracy with a similar
ANN-based approach. Hsu et al. [15] also considered ANNs
as classifiers although they used band-delimited energy of a
single-channel EEG signal. By the other hand, Zhu et al. [7]
considered horizontal (HVG) and difference visibility graphs
(DVG) mapping from single-channel EEG signals, and clas-
sified the resulting features using a support vector machine
(SVM). Liang et al. [14] employed linear discriminant analy-
sis (LDA) along with the computation of the entropy of EEG
signals in multiple scales. Random forest (RF) is fed with
Renyi’s entropy in Fraiwan et al. [13] and statistical moments
in wavelet domain in [12], both extracted from a single EEG
channel. In [12, 13], among many classification algorithms,
RF was the best-performing choice.

Statistical information suppress effects of individuals’ vari-
ations on the analyzed signal whilst capture its main behavior.
By using feature selection algorithms, Şen et al. [25] surpris-
ingly ranked statistical moments extracted from EEG in the
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time domain among the worst-performing in a set of 41 fea-
tures. In opposition to them, the work of Ronzhina et al. [11]
rated statistical moments as important parameters in signal
analysis at time domain. More recently, Hassan and Bhuiyan [26]
and Silveira et al. [12] extracted statistical information after
decomposing the signals in time-frequency domain, and used
them as classification attributes for sleep staging. Neverthe-
less in [26] the preprocessing stage applied an expensive data-
driven Ensemble Empirical Mode Decomposition (EEMD)
method for obtaining the frequency bands. The high classi-
fication performances obtained in both works highlight the
potential in associating time-frequency information with statis-
tical tools for defining features. Still related to spectral-based
pattern recognition, statistical moments were successfully em-
ployed to detect microcalcifications in mammograms [27],
suggesting their effectiveness for image and signal analysis in
the frequency domain. The current study aims to contribute to
the discussion addressed by the aforementioned authors with
respect to the choice of the feature set and its impact on the
classifier performance, as further discussed in the upcoming
sections.

3. Materials and Methods
In the current paper, the preprocessing step comprises two
tasks: (i) Each of the Pz-Oz signals is normalized with respect
to their variance and then split into smaller sets (epochs of
30s); (ii) FFT is applied on each epoch. The FFT complexity
is O(nlogn), for data of size n. In the feature selection stage,
again for each epoch, spectral-based statistical moments are
computed from the FFT amplitudes. And finally, for the clas-
sification procedure, these statistical moments form a feature
vector carried to a random forest classifier.

Each one of these steps is described and justified in the
following sections. The data set used here is described in
Section 3.1. Section 3.2 addresses the preprocessing step: sig-
nal normalization, splitting, and transformation. Section 3.3
motivates and describes the feature extraction step. Finally,
the chosen classification algorithm as well as training details
are described in Section 3.4.

3.1 Data Description
As done in [6, 12, 7], the EEG data used in the current study
were obtained from the PhysioNet Sleep-EDF (Expanded)
database [28, 29]. We used all available signals from 20
subjects recorded during two nights, with the exception those
signals recorded in the second night from the subject labeled
as 13, which were not available in the database. All the
thirty nine (39) analyzed signals were obtained from healthy
volunteers, aged between 25 and 34, who stated not having
used any sleep-related medication [30].

Since sleep can be seen as a succession of phenomena
that begins in the brain stem, extending to all regions of the
brain, the several EEG channels can contain redundant infor-
mation [31]. Therefore it is well accepted by the scientific
community that one EEG channel shall sufficiently provide

information to classify the sleep stages as stated in [11], and
also explored in [5] and [32]. The recordings analyzed here
are formatted in the EDF standard and contain two EEG chan-
nels, Pz-Oz and Fpz-Cz, sampled at 100Hz. In this study,
as in [7, 11, 4], only the Pz-Oz channel is used since better
results with respect to Fpz-Cz were obtained when applying
different methodologies.

Together with the two EEG channels, each signal from the
Sleep-EDF database has an associated hypnogram, containing
a sleep stage classification. These annotations (scorings) are
provided for each 30-second epoch of the recorded signals,
and were performed manually by sleep experts, following the
R&K recommendations [8]. Aiming to agree with the pro-
vided annotations and to enable the correct method evaluation,
the chosen length of the analyzed epochs is also 30 seconds.
Epochs whose hypnograms were labeled as ”movement time”
or ”not scored” were removed from the analysis since both
situations are not relevant for the sleep staging problem.

3.2 Preprocessing of EEG Signals
As mentioned previously, the input set contains the data from
the Pz-Oz channel of the 39 EEG signals, denoted by S j, each
one containing k = 1, . . . ,N samples. Since each signal S j
( j = 1, ...,39) is recorded in different conditions and is prone
to individual signal variations between subjects [33], we start
by normalizing each one of the input signals, striving for a
zero mean and unit variance signal Ŝ j.

To accomplish that, the signal mean, denoted by s j in
(eq. (1)) and its standard deviation σ j (eq. (2)) are calculated.
Thereafter, the normalized signal Ŝ j (eq. (3)) is obtained by
subtracting s j from each sample S j,k and dividing the result
by the corresponding σ j. This sort of normalization is also
seen on other time-series related applications [34], because of
the advantage of diminishing the biases of the data.

s j =
∑

N
k=1 S j,k

N
, (1)

σ j =

√
1

N−1

N

∑
k=1

(S j,k− s j)2, (2)

Ŝ j,k =
S j,k− s j

σ j
, k = 1, . . . ,N. (3)

Afterwards, the normalized signals Ŝ j ( j = 1, . . . ,39) are
split into Q epochs of 30 seconds length aiming to match the
annotation interval provided by the database. Here the epochs
are denoted by E i, i = 1, ..,Q, omitting the index j to simplify
the notation. Given the signal sample rate of r = 100 Hz, the
epoch time interval of t = 30 s and the signal length N, the
number of epochs for each signal Ŝ j is given by Q = bN

p c,
being p = t · r = 3000 and b.c the floor function. The FFT is
then applied to each epoch, generating as output a vector of
complex numbers (eq. 4).

f i = FFT (E i), i = 1, . . . ,Q. (4)

Because of the symmetry of the FFT coefficients [17], we
use only half of them, p/2, that are associated to the positive
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frequencies. For being implemented in portable systems, this
simple property of the FFT represents a significant advantage
in comparison to data-driven techniques, that relie on adaptive
procedures to obtain convergence to the searched results. To
complete the preprocessing stage, the modulus (or the norm
of the complex values) of the FFT coefficients is computed,
given by eq. (5) and eq. (6), assuming ℜ(z) and ℑ(z) as the
real and imaginary parts of a complex number z. The variable
F i

m in eq. (6) is proportional to amplitude of single-side EEG
epoch spectrum.

F i = {F i
0,F

i
1, . . . ,F

i
p/2}, i = 1, . . . ,Q, (5)

F i
m =

√
ℜ( f i

m)
2 +ℑ( f i

m)
2, m = 0,1, . . . , p/2. (6)

3.3 Feature Extraction
As the sleep staging with EEG signals is considered a typical
problem of classification with extracted features [32, 4, 25],
selection of the classifier inputs is the most important com-
ponent of pattern classification since even the best classifier
will perform poorly if the inputs are not selected well [35].
Moreover, it can be observed that different classifiers provide
distinct performances for the same feature set, indicating that
matching both may enhance results. In other words, the perfor-
mance can be enhanced by taken the operation principle of the
classifier into account and choosing a feature set that favors
the classification process. In classification processes relying
on decision trees, the classifier uses one or more features
to recursively discriminate set of individuals into different
classes, obtaining as many pure sets as possible thus leading
to entropy reduction. The feature set proposed in this paper,
takes the decision trees’ classification strategy into account by
systematically providing means to discriminate one or more
classes at time.

To illustrate the way in which features obtained from
different patterns can be employed to separate each of six
sleep stages defined by the R&K standard [8], the corre-
sponding mean-value curves computed from all the F i values,
i = 1, . . . ,39 ·Q are presented in Figure 11. Figure 1 (left)
shows the normalized values for frequencies from 0.5 to 10
Hz and Figure 1 (right), for 10 to 50 Hz. The F i signals
are grouped according the provided annotations (hypnogram
provided by the dataset), and the mean curves are computed
component-wise, given as functions of the frequencies. As
observed in Figure 1 (right), by using the mean of Fourier
coefficients between 30-50Hz is enough to separate a pure
class W. Moreover, taking the average of coefficients corre-
sponding to the sigma rhythm allows for separating S2, S3,
and S4 from S1 and S3. This kind of reasoning stemmed from
empirical observations on several spectral features guided the
construction of the method proposed in this work.

The set of attributes proposed in the current work for the
classification of sleep stages is computed from the vectors F i,

1The whole range of frequencies of interest of this study (0.5–50Hz) is
presented in two plots because of the dissimilar scales in the vertical axis.
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Figure 1. Mean of the Fourier coefficients. Left panel for
frequencies from 0 to 10Hz. Right panel for frequencies from
10 to 50 Hz.

which contain the modulus from the Fourier coefficients of
each epoch i. Again the notation is simplified, omitting the
index j to specify each one of the 39 input signals, totalizing
39 ·Q vectors F i to be analyzed. For the construction of this
set of attributes (denoted by V ), three statistical moments for
certain frequency bands are computed: mean, skewness and
kurtosis. The chosen frequency bands are associated to the
main brain rhythms, what contributes for emphasizing the
difference among them. In this sense, the computation of
skewness (which is a measure of the degree of asymmetry
of the data distribution) and kurtosis (which describes the
peakedness of a distribution) are considered to strength this
distinction.

The chosen eight attributes as well as the related frequency
ranges are shown in Table 2. The reader can note that, ac-
cording to the Nyquist theorem [17], we can only represent
frequencies up to 50Hz.

3.3.1 Mean of the FFT Coefficients from 30 Hz to 50 Hz
The first feature of the vector of attributes, V i

1, is given in
eq. (7). It is associated to index q = 1 of Table 2, and it is
computed for each epoch i.

V i
1 =

Nq

∑
k=nq

F i
k

Nq−nq
, i = 1, ..,Q. (7)
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Table 2. Eight proposed features computed from the modulus
of the Fourier coefficients according to the indicated
frequency range.

Index q Measure Frequency range (Hz)
1 Mean 30-50
2 Kurtosis 11-50
3 Skewness 11-50
4 Mean 0.5-4 (Delta rhythm)
5 Mean 4-8 (Theta rhythm)
6 Mean 8-13 (Alpha rhythm)
7 Mean 13-30 (Beta rhythm)
8 Mean 11-15 (Sigma rhythm)

The values nq and Nq, with q ∈ {1, . . . ,8}, are defined respec-
tively as the indexes of the first and the last Fourier coefficient
for each selected range of frequency, presented in Table 2.

As can be seen in Figure 1, the average value of the co-
efficients at frequencies between 30Hz and 50Hz is roughly
constant for all the stages. However, for the awake stage curve
(W), the average value is significantly larger when compared
to the other stages.

W S1 S2 S3 S4 REM

Sleep Stage

0

50

100

M
ea

n
(3

0-
50

H
z)

Figure 2. Box plot of the mean of the modulus of the FFT
coefficients from 30 Hz to 50 Hz, according to the six sleep
stages, computed based on each epoch and each signal.

In Figure 2, the information presented in Figure 1 is now
depicted in terms of the box plot specifically for the selected
range of frequency (30-50 Hz), highlighting the main differ-
ences among the awake stage and all the remainders. As sug-
gested in [26], the non-overlapping and non-collinear notches
of the box plots suggest good inter-class variation of the se-
lected features. The mean of the FFT coefficients from 30 to
50Hz allows the classifier to distinguish the awake stage from
the others. Thus, the next attributes should be chosen such
that they could contribute for distinguishing all other sleep
stages (S1 to REM) from each other. In this scenario, the
further quantities to be analyzed are skewness and kurtosis
(third and fourth statistical moments) also computed based on
the values of F i restricted to specific frequency ranges.

3.3.2 Kurtosis and Skewness of the FFT Coefficients from
11 to 50Hz

The next two chosen attributes are the third and fourth mo-
ments about the mean, the skewness, given in eq. (8), and
kurtosis, given in eq. (9). Skewness indicates the shape defor-
mations of a data distribution when compared with the normal
distribution, and kurtosis measures how outlier-prone a distri-
bution is [36]. These two figures of merit are now computed
from all values F i, again grouped for each R&K sleep range
and restricted to a selected range of frequencies, delimited by
nq and Nq, q = 2 and q = 3, according:

V i
2 =

1
(Nq−nq)

Nq

∑
k=nq

(F i
k −F i)3

σ3
q

, i = 1, ..,Q; (8)

V i
3 =

1
(Nq−nq)

Nq

∑
k=nq

(F i
k −F i)4

σ4
q

, i = 1, ..,Q, (9)

The quantity σq is the standard deviation computed only for
the selected frequency ranges, i.e. for indexes between nq and
Nq, q= 2,3. These two attributes allow to distinguish the sleep
stages W, S1 and REM from S2, S3 and S4. Figures 3a and
3b present the average kurtosis and skewness for each sleep
stage assuming all signals from the data base, as previously
explained. As can be seen in Figure 1, the shape of the curves
for stages S2, S3 and S4 are different compared to the other
stages, strongly suggesting that kurtosis and skewness are
effectively good options to discriminate sleep stages.

3.3.3 Mean of the FFT Coefficients of the Brain Rhythms
The feature vector V considered here, aggregates also the
mean values computed from the modulus of the FFT coeffi-
cients for the sleep-related rhythms. Again, these quantities
are restricted to the range of selected frequencies, as indicated
in Table 2, delimited by nq and Nq. Figure 4 present the mean
values of F i grouped in the six R&K sleep stages for the
sleep-related rhythms. Once more, it is possible to observe
the sensibility of the proposed features.

3.4 Classification Algorithm
The feature vector V , considered as the input data for the clas-
sification procedure, containing the eight features presented in
the previous sections, is computed for each 30-second epoch
indexed by i, i= 1, ...,39 ·Q. Since the associated hypnograms
are also informed in the database, the correct classification
label is known for each epoch, enabling the evaluation of the
robustness of the selected feature set for a specific classifica-
tion algorithm.

Here, the considered classification procedure is the RF
algorithm, introduced by [37] and already used in [12, 13]
to classify sleep stages, but assuming different features. The
RF consists in a set of T = 10 decision tree predictors that
classify individually an input instance and gives their votes for
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Figure 3. Box plot of the kurtosis and skewness of the modulus of the FFT coefficients from 11 to 50hz of each epoch from the
EEG signals.

total computation. The most voted class is the random forest
output. In the current study, WEKA’s [38] implementation
is used, and each one of the T tree predictors is a random
tree. In [13], the random trees were also used as individual
predictors although, as stated by them, other decision tree
algorithms, such as C4.5, CART, CHAID and REP tree, could
be used.

The process of building the random forest begins with a
training set selection phase. Each random tree is grown with
a smaller number F of features randomly selected from the
original amount, given by F = blog2(M)+1c [37]. Here M is
the total of the instances’ features. Furthermore, a replicated
subset of the training set – obtained through bootstrap sam-
pling – is used as a training set for each tree predictor growing
during the classification process. Since for each epoch, the
complete number of features M = 8, each tree is grown with
exactly F = 4 random features.

The tree growing, i.e. how the features are disposed in
the tree body, is guided by the information gain measure [13].
Each tree grows as much as possible and no pruning technique
is applied. Aiming to assess the robustness of the classifi-
cation algorithm used in this study, the robust k-fold cross
validation [39], with k = 10, is applied. In this technique,
the complete dataset is divided into k = 10 parts. In a given
moment, k−1 subsets are used to train the classifier and the
remaining one is considered to test the built model. This pro-
cedure is repeated k times and each part is used for testing
just once. The average accuracy of all k executions is taken as
the final evaluation.

In fact, preliminary tests with four decision tree algorithms
also available in WEKA – namely random tree, C4.5, REP
tree and CART – were also performed. The average results
for the 6-state sleep staging problem, following the 10-fold
cross validation are, respectively, 86.5%, 88.6%, 89.1% and
89.4%. However, as indicated in [12], RF has a better trade-off
between accuracy and runtime.

4. Results and Discussion
The response of each extracted feature to W, S1, S2 and S3
R&K sleep stages is depicted for the second night recording of
subject 00 in Figure 5. It illustrates how their complementary
behavior contributes to the six sleep stages identification.

To provide a basic framework for assessment of the pro-
posed methodology, the confusion matrices for the 2- to 6-
state sleep stages are computed. A confusion matrix presents
an overview of all hits and misses for each class performed
by some classifier. These hits and misses presuppose the
knowledge of correct instances, that are in this case the given
hypnograms of each epoch. From a given confusion matrix,
it is possible to obtain classes’ metrics as precision and sen-
sitivity besides the overall method’s accuracy. Let t p, f p,
tn and f n be the amount of true positives, false positives,
true negatives and false negatives, respectively. The accuracy
computation is given by

accuracy =
t p+ tn

t p+ tn+ f p+ f n
.

Similarly, precision and sensitivity measures for each class
are obtained through

precision =
t p

t p+ f p

and

sensitivity =
t p

t p+ f n
.

According to [40], precision is the rate of relevant classi-
fied instances, i.e. the correct scores; whilst the sensitivity is
the rate of relevant instances which were correctly classified.
The resulting confusion matrices and class metrics for the 6-
to 2-state sleep stages are disposed in Tables 3, 4, 5, 6 and
7. Not all related works exhibit this complete information
source, and therefore, we compare the obtained results with
those we had access to.
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Figure 4. Box plots of the mean values computed from the modulus of the FFT coefficients for the alpha, beta, theta, delta and
sigma rhythms, assuming data grouped in the six R&K sleep stages.

The proposed method provides a sensitivity enhancement
of respectively 9.2% and 10.4% on S1 and REM staging,
with respect to our previous work [12], in the 6-states case (cf.
Table 3). Those two classes are prone to be misclassified while
staging, with S1 normally exhibiting the poorest classification
performances [32].

For the group with 5 classes (cf. Table 4), the following
comparisons can be made. The proposed method performed
7% and 41.6% better in terms of precision for W and S1
stages when compared to [4] with their own data set being
considered. In the case where Physionet signals are employed,

the proposed methodology yields a 13.8% higher sensitivity
for W. Respective precisions for W and SWS are 7.1% and
2.4% higher, and sensitivity of S2 is 1.8% better in comparison
to [13]. When compared to [15], our methodology achieves
25.9% and 14% higher precision and sensitivity values for
the W stage. Still, sensitivity of SWS is 14.9% higher for
the introduced methodology. In comparison with [14], the
proposed methodology achieves 8.2%, 37.5% higher precision
values for W and S1.

For the 4-state sleep stage classification (cf. Table 5), the
proposed method achieved 11.7% and 2.7% higher precision
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Figure 5. Behavior of the eight extracted features for several sleep stage transitions from the second night recording of subject
00 according to the Physionet Bank notation. From top to bottom, the mean in 30–50Hz, the kurtosis and skewness in 11–50Hz
and the mean of delta, theta, alpha, sigma and beta rhythms.
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Table 3. Confusion matrix of the 6-state sleep stages
classification

Proposed method’s scoring

W S1 S2 S3 S4 REM

E
xp

er
t’s

sc
or

in
g

W 70143 134 152 8 31 404

S1 971 439 477 6 2 909

S2 601 82 15529 518 98 971

S3 126 1 1164 1594 475 10

S4 82 0 199 487 1562 3

REM 594 133 885 7 4 6094

Precision 96.7% 56.1% 84.5% 61.2% 72.2% 72.5%

Sensitivity 99.0% 15.0% 87.2% 47.9% 66.1% 79.2%

Table 4. Confusion matrix of the 5-state sleep stages
classification

Proposed method’s scoring

W S1 S2 SWS REM

E
xp

er
t’s

sc
or

in
g

W 70145 127 147 53 400

S1 984 429 473 15 903

S2 602 72 15353 775 997

SWS 198 1 1176 4316 12

REM 598 118 895 20 6086

Precision 96.7% 56.4% 85.1% 83.5% 72.6%

Sensitivity 99.0% 15.3% 86.5% 75.3% 78.9%

for the S1/S2 and SWS stages. In the context of 3 classes (cf.
Table 6), our method was 1.7% more sensitive for the awake
stage. Both results are regarded to [7]. Although we do show
Table 7, it was not possible to compare the sensitivity and
precision for the proposed method, in the 2-sleep stage context,
once considered studies do not present this information.

Table 5. Confusion matrix of the 4-state sleep stages
classification

Proposed method’s scoring

W S12 SWS REM

E
xp

er
t’s

sc
or

in
g

W 70044 417 52 359

S12 1484 16870 753 1496

SWS 187 1202 4297 17

REM 567 1352 16 5782

Precision 96.9% 85.1% 84.0% 75.6%

Sensitivity 98.8% 81.9% 75.3% 75.1%

Summarizing, the awake stage is the most identifiable
stage by the proposed methodology for all the cases. The
same behavior is observed in [7]. Furthermore, as occurred
in [7] and [20], the S1 stage is easily classified as REM and
its adjacent stages, i.e. awake and S2. The authors in [11]
have also reported similar issue in their methodology, which
still remains a challenge for the researchers in this field [32].

Table 8 shows the comparison of the proposed method

Table 6. Confusion matrix of the 3-state sleep stages
classification

Proposed method’s scoring

W NREM REM

Expert’s

scoring

W 69995 523 354

NREM 1595 23195 1516

REM 563 1388 5766

Precision 97.0% 92.4% 75.5%

Sensitivity 98.8% 88.1% 74.9%

Table 7. Confusion matrix of the 2-state sleep stages
classification

Proposed method’s scoring

W SLP

Expert’s

scoring

W 69761 1111

SLP 1850 32173

Precision 97.4% 96.7%

Sensitivity 98.4% 94.6%

with other well established studies in terms of overall accuracy
for classical AASM 5-state sleep stage scoring.

One can note that the proposed methodology is reliable
even considering more than 100,000 epochs. Moreover it
achieves the best performance among the considered state-of-
the-art studies. The introduced methodology has 6.4% higher
accuracy when compared with [13], that used the same classi-
fier and approximately five times less epochs for analysis.

Finally, Table 9 compares the performance of our method
with other methods that focus in major of the 2- to 6-state
sleep stage classifications, and use the same dataset. Once [11]
presented several ANN architectures, those reported by the
authors as performing better are considered here for com-
parison. Note that the proposed method achieved the best
accuracies for the 6-, 5- and 4-state sleep stages. For the
problems of 3 and 2 classes, the proposed method achieves
the second and third best results. It is important to highlight
again that [4, 11, 7] do not consider a single feature set for the
five classification problems, as we do.

5. Conclusion
The current paper presents a novel methodology for classifi-
cation of sleep stages based on the analysis of a single EEG
channel in frequency domain. A positive aspect is the as-
sumption of a single set of just 8 features for scoring all the
2- to 6-state sleep stages in accordance with the Rechtschaf-
fen and Kales’ recommendations. Another advantage of the
proposed methodology, is the inexpensive treatment given for
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Table 8. Comparison with other methods for 5-state sleep stages

Methodology Features Classifier
Quantity

of epochs
Accuracy

Krakovska and Mezeiová [23] EEG-based features ANN 18,058 74.0%

Liang et al. [14] Multiscale entropy LDA 3,708 76.9%

Fraiwan et al. [13] Renyi’s entropy RF 20,269 83.0%

Charbonnier et al. [24]
EEG, EMG and

EOG-based features
ANN 62,399 85.5%

Hsu et al. [15] Energy of EEG ANN 2,880 87.2%

Zhu et al. [7] DVG and HVG SVM 14,963 89.0%

Silveira et al. [12] Statistical moments RF 106,376 91.5%

Proposed method Statistical moments RF 104,895 91.8%

Table 9. Accuracy comparison with other methods for sleep
stage classification

Sleep

states

Zhu et al.

[7]

Ronzhina

et al. [11]

Berthomier

et al. [4]

Silveira et al.

[12]

Proposed

method

2 97.9% 96.9% 95.4% 97.3% 97.1%

3 92.6% 90.3% 88.3% 93.9% 94.3%

4 89.3% 81.4% 74.5% 92.3% 92.4%

5 88.9% - 71.2% 91.5% 91.8%

6 87.5% 76.7% - 90.5% 90.9%

the preprocessing step, specially when compared with EMD-
based techniques to obtain ranges of frequencies. These are
signal-driven techniques which might need a great amount of
iterations until convergence has been obtained and features
can be actually computed. In the recently published work
[26], 5000 EEMD iterations were considered for generating
the localized time-frequency signal estimations, which might
be considered as a drawback in the design of portable systems.

More than 100,000 epochs of 30 seconds from an open
access database are analyzed highlighting the robustness of the
preformed analysis, when considering a large amount of data.
In the current study, WEKA’s random forest implementation
was used as the classification procedure, whose performance
is also compared with other classifiers also at disposal in
the WEKA software. The introduced procedure achieves the
best performance for classifying the sleep stages in 5 states
when compared with several state-of-the-art studies, that in
general considered a much smaller set of analyzed epochs.
Furthermore, the proposed method achieves best results for 4-
to 6-state sleep stages classification scenarios.

Through the presented scoring experiments, the strength
of the proposed methodology is enhanced and an significant
contribution in distinguishing S1 and REM is obtained. The
statistical moments computed from Fourier coefficients re-
stricted to frequency ranges not obviously related to sleep
rhythms show themselves as an effective feature choice capa-
ble of increasing the accuracy of sleep stages classification
procedures.

As a future work, we intend to investigate measures to
mitigate the effects of class imbalance. and also evaluate
the performance of the random forest algorithm based not on
random trees but on other algorithms like REP tree, CART
and C4.5. Motivated by the results obtained by the individual
predictors (cf. Section 3.4), we do believe that better results
can be achieved. Other ensemble configurations, besides
pruning can be explored aiming to enforce a good compromise
between performance and runtime.
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