
SciPy and OpenCV as an interactive computing
environment for computer vision

Thiago T. Santos 1

Data submissão: 12.08.2014
Data aceitação: 25.03.2015

Seção melhores tutoriais XXVII SIBGRAPI, Rio de Janeiro, Brasil, 2014.

Abstract: In research and development (R&D), interactive computing environ-
ments are a frequently employed alternative for data exploration, algorithm develop-
ment and prototyping. In the last twelve years, a popular scientific computing envi-
ronment flourished around the Python programming language. Most of this environ-
ment is part of (or built over) a software stack named SciPy Stack. Combined with
OpenCV’s Python interface, this environment becomes an alternative for current com-
puter vision R&D. This tutorial introduces such an environment and shows how it can
address different steps of computer vision research, from initial data exploration to
parallel computing implementations. Several code examples are presented. They deal
with problems from simple image processing to inference by machine learning. All
examples are also available as IPython notebooks.

1 Introduction

Computer vision practitioners need a computing environment that lets them explore
a variety of data like images, video sequences, point clouds and feature vectors. Such an
environment should help the development and testing of new models and algorithms, and the
deployment of the results, either as a final software module or a scientific/technical publica-
tion. It should also provide an extensive list of tools: routines for image processing, machine
learning, statistical inference, linear algebra, convex optimization and graph algorithms, just
to name a few. Problems involving large sets of images can require such high-performance
computing (HPC) that the environment should provide practical ways to parallelize and dis-
tribute computation. An ideal environment should also combine documentation and com-
putation in a single bundle, allowing results reproducibility [1], but preventing the research
pipeline to become more cumbersome.

In the last twelve years, a powerful scientific computing environment emerged from
the Python programming community. This language is an attractive option for researchers:

1Embrapa Agricultural Informatics, POBOX 6041
thiago.santos@embrapa.br

SciPy and OpenCV as an interactive computing environment for computer vision

it is interpreted (a wanted property for interactive computing environments), dynamically
typed, and presents a very concise and elegant syntax, resembling the pseudo-code found in
computer science textbooks. But the advent of an efficient module for n-dimensional array
representation and manipulation was the tipping point for Python, which has become a major
player in scientific computing. The Numarray module was created by Greenfield et al. [2] to
address astronomical data analysis. In 2005, Numarray successor, NumPy [3, 4], appeared
and became the workhorse of the Python scientific computing. An active community com-
posed of scientists and engineers flourished around Python and NumPy, represented today by
the SciPy Stack and the SciPy Conferences2.

1.1 Why is an interactive environment important to computer vision?

In computer vision, the practitioner is interested in inferring the world state from
images, which act as observations. The statistical relation between the world state and the
observed images is defined by models. A particular model is defined by parameters, chosen
by learning algorithms. Finally, the world state is estimated by inference algorithms. This
“vision on computer vision” is properly presented by Prince [5] and translates the state-of-
the-art of contemporary research in the field, which is deeply associated to machine learning
nowadays.

The development of these models and subsequent problems in learning and infer-
ence require a computing environment that allows proper tinkering with machine learning
techniques. Visualization and exploration tools are necessary to address problems involving
generalization, overfitting, dimensionality reduction and optimization. An interactive com-
puting environment as IPython [6], enriched with tools from the SciPy Stack and the OpenCV
library, can address these needs.

The present tutorial provides a short overview on this Python-based computing envi-
ronment. Considering the large set of tools available and the space constraints, this tutorial
does not intend to be a complete reference or a broad review. It provides just a glimpse of
the environment’s capabilities to the computer vision community, briefly presenting and dis-
cussing some problems and code examples. These examples can guide the user’s first steps
and the provided references help on the next ones.

This tutorial is organized as follows. Section 2 presents the IPython interactive Python
shell. Section 3 briefly presents how OpenCV can be used under Python. Section 4 presents
the core components of SciPy Stack: the NumPy n-dimensional arrays, the Matplotlib plot-
ting library and the scientific library. Machine learning receives attention in Section 5 where
the scikit-learn module is presented. Section 6 introduces IPython parallel high performance
computing capabilities. A longer example on structure from motion illustrates various fea-

2http://conference.scipy.org

RITA • Volume 22 • Número 1 • 2015 155

http://conference.scipy.org

SciPy and OpenCV as an interactive computing environment for computer vision

tures of the environment combined in Section 7. Finally, Section 8 presents some conclud-
ing remarks. Orientations regarding the environment’s installment and initialization can be
found in the appendices. IPython notebooks presenting the complete code for the examples
are available at GitHub3.

An important clarification to the reader: along this tutorial, code examples will show
the numbered inputs, presented by blocks of code preceded by “In [n]:”, and the num-
bered outputs, the result produced by the inputed code block, preceded by “Out [n]:”.
The purpose is to illustrate the experience on working in an interactive computing environ-
ment. However, in some cases the code block of a numbered input produces no output at all,
so the IPython shell will omit the corresponding “Out [n]:” text.

2 The IPython shell

IPython is an enhanced Python shell for interactive distributed and parallel comput-
ing [6]. When users are testing new ideas and algorithms in computer vision, evaluating the
results directly, in an interactive way, is more convenient than the traditional compile-then-
execute cycle. A live computing state is convenient because previous intermediate results (im-
ages, feature vectors, parameters) are kept available for exploration. Pérez and Granger [6]
argue that, in a research context, determining which computations must be performed next
often requires significant work. This is particularly true for computer vision by the reasons
presented in Section 1.1.

In an interactive computing system, users should have access to all session state. In
IPython, this access is not just provided by the dynamically attributed variables, but also by
numbered output prompts. Previous computations can be retrieved using an underscore “_”
and the number of the output, as shown in the following example:

In [1]: r = 3.

In [2]: 2 * pi * r
Out[2]: 18.84955592153876

In [3]: _2
Out[3]: 18.84955592153876

In [4]: 2 * _2
Out[4]: 37.69911184307752

3 http://nbviewer.ipython.org/github/thsant/scipy4cv

156 RITA • Volume 22 • Número 1 • 2015

http://nbviewer.ipython.org/github/thsant/scipy4cv

SciPy and OpenCV as an interactive computing environment for computer vision

IPython has other usedul features: tab completion and system shell integration.
When the user types the tab key, IPython tries to complete the current prompt with keywords
or the names of methods, variables and files in the current directory. This is particularly use-
ful when exploring unfamiliar or large APIs as in OpenCV or in SciPy library. Regarding
system shell integration, not only can IPython call any system command, but it also can cap-
ture the shell’s output in Python variables and call system commands with values computed
from variables.

These simple features are useful, but they alone would not explain IPython popularity
in scientific computing. The three features that make IPython an outstanding scientific com-
puting environment are (i) the support for data visualization, (ii) the notebook environment
and (iii) the facilities for interactive distributed and parallel computation. Visualization fea-
tures will be presented in Section 4.2, in the context of Matplotlib. The notebook environment
is presented next.

2.1 The IPython Notebook

The IPython Notebook is a web-based version of the IPython shell presenting extended
functionality4. In a notebook, the user can organize formatted text and code blocks in a
flexible way. Text and code are organized in cells that can be inserted, deleted, rearranged
and executed as needed. IPython notebooks can handle plots, mathematical formulas and
code output, everything is organized in a single executable document. Notebooks are being
used for research notes and the production of articles and books [7].

A notebook server is a Web server that will read/write notebook files from/to the
current directory. Users can employ any standard Web browser to edit code, with the help of
automatic syntax highlighting, and tab completion (Figure 1).

In a notebook, a Markdown cell is able to render rich-formatted text using the Mark-
down markup language. Mathematical notation is defined using LATEX syntax and rendered
by MathJax. Figure 1 (c) shows a Markdown cell produced by the following plain text:

Whitening

Let μ_I and σ_II be the mean and the
standard deviation of a grayscale image I. The
whitening operation is defined by

\begin{equation}
W_I[i,j] = \frac{I[i,j] - \mu_I}{\sigma_I}.

\end{equation}

4Appendix B presents how to execute IPython in console, qtconsole and notebook modes.

RITA • Volume 22 • Número 1 • 2015 157

SciPy and OpenCV as an interactive computing environment for computer vision

Figure 1 (b) shows a code cell. It contains Python code5 that is sent to the IPython
interpreter running on the server and executed, then the resulting output is sent back to the
browser for exhibition. That means that IPython can be running in a powerful machine like a
server while the user is able to perform her work from a leaner system as a laptop or a tablet.
If the result of a code block is a plot, it can be exhibited inside the notebook in the browser
(inline plotting), as seen in Figure 1 (d).

IPython notebooks are stored in JSON files that keep the cells’ content. These files
use the extension .ipynb and can be exported as Python scripts, HTML documents or even
printed. But what makes notebook files suitable to reproducible research is the fact that
they are executable documents: thery are not only able to store textual and mathematical
descriptions but also to replicate the computations.

3 OpenCV

OpenCV is a popular library in the computer vision community. It has been used
widely in industry and academy. Started in 1999 and popularized in the following decade,
OpenCV is covered in books [8, 9, 10] and tutorials [11, 12], so this text will not provide
another overview of the library. The interested reader who is not familiar with OpenCV
should refer to those cited texts and the library’s official documentation [13].

Developed in efficient C/C++ code, OpenCV presents a stable Python interface since
2009. The functions’ prototypes in the Python API can differ from the C++ version, but
the OpenCV documentation presents both versions for reference. IPython code completion
capabilities can also help programmers used to the C++ API to quickly identify the proper
Python prototypes.

The OpenCV’s Python module can be easily imported using:

In [1]: import cv2

In this tutorial every code that starts with the “cv2.” prefix is using OpenCV’s func-
tions. Several examples of the OpenCV usage under Python are found in the next sections.

4 SciPy Stack

SciPy maintainers define it as an ecosystem of open-source software for mathematics,
science, and engineering. This section introduces three of the core packages: NumPy (n-
5IPython notebooks are being extended to support other programming languages. The Julia language is supported
to date.

158 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

(a)

(b)

(c)

(d)

Figure 1. An IPython notebook. (a) IPython creates a Web server and users edit and
manipulates their notebooks using a Web browser. (b) A code cell executes Python scripts.
(c) A Markdown cell is able to present rich-formatted text and mathematical formulas using

LATEX. (d) An inline plot using Matplotlib.

RITA • Volume 22 • Número 1 • 2015 159

SciPy and OpenCV as an interactive computing environment for computer vision

dimensional arrays), Matplotlib (visualization and plotting) and the SciPy Library (numerical
algorithms and domain-specific toolboxes). IPython, presented previously in Section 2, is
also considered a core package of the stack. The scikit-learn package for machine learning is
not part of the core, but it is considered a major component of the stack and will be introduced
in Section 5. The next section will present the base that supports all the stack: NumPy.

4.1 NumPy

A NumPy array is a multidimensional and uniform collection of elements (all ele-
ments occupy the same number of bytes in memory) [4]. It is the standard n-dimensional
array representation in the SciPy Stack and, in OpenCV operation under Python, it replaces
the OpenCV’s Mat type as the data structure for images. A NumPy array is commonly used
to represent images, matrices, vectors and data points. It is also able to represent general
n-d arrays up to 32 dimensions. NumPy avoids expensive for loops executed by the Python
interpreter when operating on arrays. Instead, efficient vectorized operations are internally
executed by machine code, resulting in improved performance.

In Python environment, the NumPy module can be imported as follows:

In [1]: import numpy as np

Then, the module’s functions and variables can be accessed by the declared name:

In [2]: np.arange(9)
Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

Alternatively, names from a module can be imported directly into the symbol table as follows:

In [1]: from numpy import *
In [2]: arange(9)
Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8])

In IPython, the -pylab option pre-load NumPy for interactive use, producing the same
effects as the import operation above (see Appendix B).

4.1.1 Images as NumPy arrays In the OpenCV’s Python wrapper, the imread function
returns an image as a NumPy array. The array dimensions can be read from the shape
attribute:

In [18]: lenna = cv2.imread(’../data/lenna.tiff’,

160 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

cv2.IMREAD_GRAYSCALE)

In [20]: lenna.shape
Out[20]: (512, 512)

Grayscale images are commonly represented by 2-D arrays of 8 bits unsigned integers, cor-
responding to values from 0 (“black”) to 255 (“white”). In NumPy, this data type (dtype)
is named uint8:

In [21]: lenna.dtype
Out[21]: dtype(’uint8’)

In [22]: lenna
Out[22]:

array([[162, 162, 162, ..., 170, 155, 128],
[162, 162, 162, ..., 170, 155, 128],
[162, 162, 162, ..., 170, 155, 128],
...,
[43, 43, 50, ..., 104, 100, 98],
[44, 44, 55, ..., 104, 105, 108],
[44, 44, 55, ..., 104, 105, 108]], dtype=uint8)

In [23]: lenna[0,0]
Out[24]: 162

The uint8 data type in NumPy corresponds to the CV_8U type in OpenCV. Similarly, color
images in RGB are commonly represented by 24 bits: 8 bits for each one of the three channels
(red, green and blue). In NumPy, a M ×N color image can be represented by an M ×N × 3
uint8 array:

In [11]: mandrill = cv2.imread(’../data/mandrill.tiff’)

In [12]: mandrill.shape
Out[12]: (512, 512, 3)

In [14]: mandrill.dtype
Out[14]: dtype(’uint8’)

In [15]: mandrill[2,3]

RITA • Volume 22 • Número 1 • 2015 161

SciPy and OpenCV as an interactive computing environment for computer vision

25

50

75

100

125

150

175

200

225

−200

−150

−100

−50

0

50

100

150

24

26

28

30

32

34

36

38

40

(a) (b) (c)

Figure 2. Images as NumPy arrays. (a) A grayscale image represented as an uint8 array.
(b) The convolution by a Sobel’s kernel produced an image presenting negative values,

represented by an int32 array. (c) A thermogram of a maize field represented by a
float32 array, where each pixel’s value corresponds to a temperature in Celsius degrees.

Out[15]: array([29, 46, 54], dtype=uint8)

The output of the last command above shows that the value at pixel (2, 3) is 29, 46, 54. The
image was loaded by OpenCV using the imread procedure. OpenCV loads color images in
BGR order, so 29, 46 and 54 correspond to the values of blue, green and red respectively. The
triplet is returned as a 3-D vector (a unidimensional array). Direct access to the color value
can be obtained by indexing the color dimension: mandrill[2,3,1], which returns the
green channel value, 46.

Images are not limited to non-negative integer types. Image convolutions can produce
negative integers or real values. For example, the Sobel convolution kernel produces negative
values representing the derivatives. Thermography images and depth images present real
numbers that are better represented by floating-point values. Figure 2 shows some examples
of images represented with different data types.

4.1.2 Indexing and slicing As seen previously in the Mandrill example, array’s elements
can be indexed with the [] operator. Standard Python slicing can also be employed to retrieve
parts of an array. Slicing employs the convention start:stop:step. For example, to retrieve the
rows 3 to 9 of a bi-dimensional array A, the code A[3:10,:] is used (note stop is non-
inclusive). In a similar way, to also limit the columns to the range 5 to 8, A[3:10,5:9] is
employed. For eample, if the user is only interested in rows 3, 5, 7 and 9, she could use a step
of 2, producing A[3:10:2,5:9]. This slicing example is illustrated in the code below:

In [173]: A
Out[173]:

162 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

In [178]: A[3:10:2, 5:9]
Out[178]:
array([[35, 36, 37, 38],

[55, 56, 57, 58],
[75, 76, 77, 78],
[95, 96, 97, 98]])

Example 1 (Thresholding and fancy indexing) A NumPy array can also be indexed by masks,
defined as boolean or integer arrays. This approach is frequently called fancy indexing. In
this example, a boolean mask is produced by applying a logical operation on an array.

In [1]: lenna > 128
Out[1]:
array([[True, True, True, ..., True, True, False],

[True, True, True, ..., True, True, False],
[True, True, True, ..., True, True, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]], dtype=bool)

In [2]: res = zeros_like(lenna)
res[lenna > 128] = 255

The zeros_like function is employed to produce an array with the same dimen-
sions of the input Lenna image, but all pixels values set to zero. Combined with the attribution
operation in the last line, the code produces the matrix res defined by

res[i, j] =
{

255 if lenna[i, j] > 128,
0 otherwise. (1)

RITA • Volume 22 • Número 1 • 2015 163

SciPy and OpenCV as an interactive computing environment for computer vision

(a) (b) (c)

Figure 3. Thresholding by indexing a NumPy array properly. (a) Original Lenna image. (b)
Thresholded image produced with fancy indexing, i.e. by employing a boolean mask to

perform the maximum value attribution. (c) Negative produced by a vectorized subtraction
between a scalar and an array.

Example 2 (Whitening) Factors like ambient light intensity or camera gain produce varia-
tions in the image contrast. These factors can be compensated by whitening, a per-pixel oper-
ation that normalizes the intensity, producing a zero mean image that presents unit variance.
This example shows how whitening can be efficiently performed by vectorized operations,
without loosing the simplicity of its mathematical definition.

Let µI and σI be the mean and the standard deviation of a grayscale image I . The
whitening operation is defined by

WI [i, j] =
I[i, j]− µI

σI
. (2)

This operation is easily implemented by using NumPy as follows:

In [38]: mu = mean(I)
sigma = std(I)
W = (I - mu)/sigma

NumPy is able to perform scalar-array operations. In the code example above, all elements
are subtracted by a scalar, µI , and the resulting array is divided by another scalar, σI . Figure 4
shows the result of whitening on a low-contrast picture.

4.1.3 Image ROIs and array views Sometimes, procedures must to be limited to a region
of interest (ROI), a rectangular part of the image. In NumPy, the ROI is equivalent to the idea

164 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

0

30

60

90

120

150

180

210

240

0

30

60

90

120

150

180

210

240

(a) (b)

Figure 4. Whitening. (a) Original low-contrast image. (b) Result after whitening through
efficient vectorized operations in NumPy (values are converted to the [0, 255] range for

8 bits representation).

of view, an array that shares memory with another one. In the example below, B is a view on
array A. As expected, changes in B values produce the same changes in A.

In [61]: A
Out[61]:
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

In [62]: B = A[0:3,0:3]
B

Out[62]:
array([[0, 1, 2],

[5, 6, 7],
[10, 11, 12]])

In [63]: B[0,0] = 255
B

Out[63]:
array([[255, 1, 2],

[5, 6, 7],

RITA • Volume 22 • Número 1 • 2015 165

SciPy and OpenCV as an interactive computing environment for computer vision

[10, 11, 12]])

In [64]: A
Out[64]:
array([[255, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])

Otherwise, if the A must be preserved of any change in B, a copy of A is necessary. In the
example below, the copy method allocates more memory, data is copied, so A and B do not
share any memory.

In [65]: B = A[0:3,0:3].copy()

Reshaping is other operation that produces a view on an array. The reshaped array is
a view that presents the same number of elements, but different dimensions. As an exam-
ple, consider the Handwritten Digits Data Set in the UCI Machine Learning Repository [14]
(Figure 5). In the handwritten digits classification problem, the N × N images are usually
transformed in N2-d feature vectors for supervised machine learning. A 64-D feature vector
x can be viewed as 8× 8 image as follows:

In [80]: X = x.reshape(8,8)

Similarly, a 8× 8 image can be viewed as a 64-D vector as follows:

In [81]: x = X.reshape(-1)

4.2 Matplotlib

Matplotlib [15] is a 2-D plotting aimed to interactive computing and publication-
quality image generation. It is a more powerful tool to display images than the standard
OpenCV utilities. Interactive zooming, interpolation, automatic scaling and floating-point
array visualization are Matplotlib features that are not available in OpenCV. It also provides
a large set of plotting tools, similar to R and MATLAB R©, including line plots, scatter plots,
bar plots, histograms and vector fields6.
6Matplotlib’s maintainers keep a gallery of plotting examples at http://matplotlib.org/gallery.html.
Users can pick the desired plot from the gallery and inspect its source code, using it as a template or starting point
for their own graphics.

166 RITA • Volume 22 • Número 1 • 2015

http://matplotlib.org/gallery.html

SciPy and OpenCV as an interactive computing environment for computer vision

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0 10 20 30 40 50 60

Dimension

0

10

20

30

40

50

60

D
ig

it
sa

m
pl

e

(a) (b)

Figure 5. Reshaping. (a) The handwritten digits dataset composed by 8× 8 images [14]. (b)
Each image is reshaped in a 64-D feature vector for classification.

4.2.1 OpenCV imshow vs. Matplotlib imshow OpenCV presents an imshow func-
tion that lets the user display an image in a graphic window. It can show standard 8 bits color
or grayscale images, but different data types need adaptions. For 16 bits and 32 bits integers,
the pixels values are divided by 256, mapping a [0, 65280] range to [0, 255] before display-
ing. For 32 bits floating-point images, values are multiplied by 255, which maps the value
range [0, 1] to [0, 255]. Zooming is not supported and high-resolution images do not befit the
computer’s screen, making the visualization of large images inconvenient. Remote sensing
data or high-resolution photographies usually needs some sort of scaling before displaying.

Matplotlib presents its own imshow function, which is able to display NumPy ar-
rays as images. Differently of the OpenCV counterpart, this function is a more capable tool
for scientific visualization. Images are fitted to the plotting window according to different
interpolation methods (bilinear, bicubic, sinc and Lanczos, to name just a few). Interactive
zooming is available (a convenient feature when the user is inspecting the results of image
processing routines). Matplotlib is able to show color images in the form of M × N × 3
RGB arrays (floating-point or integer data types) or M ×N × 4 RGBA arrays presenting an
alpha channel. Exhibiting bidimensionalM×N arrays (as integer or floating-point grayscale
images) can be done with a colormap automatically fitted to the array range. The colorbar
function can be used to plot a bar that illustrates the color/value mapping employed, as shown
in Figures 2 and 4.

The simplest call to imshow just takes the array to be visualized:

RITA • Volume 22 • Número 1 • 2015 167

SciPy and OpenCV as an interactive computing environment for computer vision

In [64]: imshow(slenna)
colorbar()

The standard setting employs bilinear interpolation and the cm.jet colormap, as seen in
Figure 6 (a). Other types of interpolation and colormaps can be specified by using the argu-
ments interpolation and cmap. The code:

In [65]: imshow(slenna, cmap=cm.gray, interpolation=’nearest’)
colorbar()

produces the result shown in Figure 6 (e).

Example 3 (Showing 2-D features) In this example, GFTT [16], SIFT [17] and SURF [18]
features as computed by OpenCV and the results are visualized by using Matplotlib plot
and scatter functions.

The OpenCV wrapper of the GFTT function returns 2-D points as a NumPy array. The
plot function in Matplotlib takes two lists (or arrays) containing respectively the points’ x
and y coordinates:

In [18]: kpts = cv2.goodFeaturesToTrack(graffiti, 2000, 0.01, 3)
plot(kpts[:,:,0], kpts[:,:,1], ’b+’)
imshow(graffiti, cmap=cm.gray)
title(r’Shi-Tomasi GFTT’)

In the code above, OpenCV’s GFTT will return up to 2000 corners (features), all of them
at least 3 pixels appart. The 0.01 is a quality level parameter defined over the eigenvalues
(see OpenCV’s documentation for details). The features are returned as a 2000× 1× 2 array
and slicing is used in the plotting function to recover the lists of x and y coordinates (see
Section 4.1.2). The “b+” argument informs Matplotlib the points that have to be plotted as
blue crosses. Finally, imshow is employed to display the image, which results in the plotting
shown in Figure 7 (b).

Differently of the GFTT features, SIFT and SURF are not dimensionless. They
are multiscale features [19] and are defined over neighborhoods presenting different sizes.
OpenCV represents these features by using the KeyPoint data structure: the feature coor-
dinates are stored in the pt variable and the neighborhood diameter in the size variable.
The scatter function is able to take a list of sizes and plot the points as circular regions:

168 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a)

50

75

100

125

150

175

200

225

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b)

50

75

100

125

150

175

200

225

70 75 80 85 90

60

65

70

75

80

(c)

50

75

100

125

150

175

200

225

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(d)

50

75

100

125

150

175

200

225

70 75 80 85 90

60

65

70

75

80

(e)

50

75

100

125

150

175

200

225

Figure 6. Visualizing images with Matplotlib’s imshow. In this example, a 128× 128
grayscale version of Lenna is employed. (a) Default setting with bilinear interpolation and

the cm.jet colormap. (b) Bilinear interpolation and the cm.gray colormap. (c) Example
of zooming in on the bilinear interpolated image. (d) The “nearest” interpolation and
cm.gray colormap. (e) Example of zooming in on the nearest interpolated image.

RITA • Volume 22 • Número 1 • 2015 169

SciPy and OpenCV as an interactive computing environment for computer vision

In [19]: sift = cv2.SIFT()
kpts = sift.detect(graffiti)
x = [k.pt[0] for k in kpts]
y = [k.pt[1] for k in kpts]
s = [(k.size/2)**2 * pi for k in kpts]
scatter(x, y, s, c=’r’, alpha=0.4)
imshow(graffiti, cmap=cm.gray)
title(r’SIFT’)

In the code above, the alpha parameter is employed to plot with a 40% transparency, allow-
ing the viewer to see the image under the circles, and the “r” parameter asks for a plotting
in red. The resulting plot can be seen in Figure 7 (c). A similar plot, but displaying SURF
features, is shown in Figure 7 (d).

4.3 The SciPy Library

The SciPy library includes modules for optimization, interpolation, signal processing,
linear algebra, statistics, sparse matrix representation and operation, among others. It also in-
cludes the spatialmodule, which contains implementations for the KD-Tree data structure
(used on nearest-neighbor queries), Delaunay triangulation and convex hull computation.

Example 4 (Descriptors matching with KD-Trees) In this example, a KD-Tree is employed
to perform features descriptors matching between two images using the criteria proposed by
Lowe [17].

Consider two sets of descriptors, Di and Dj , computed by SIFT or SURF, for two
images, Ii and Ij . Matching can be performed by using nearest neighbors, just selecting
for each di ∈ Di the closest vector dj ∈ Dj . Nearest neighbor queries can be efficiently
performed by representing Dj in a KD-Tree7.

Lowe [17] observes that many features will not have any correct match, so just picking
the closest neighbor would produce many incorrect matches. The recommended method is
comparing the distances to the nearest neighbor and to the second closest one. If the ratio
between the two distances is below a threshold, the matching is accepted. The rationale
behind this procedure is that features with no proper matching would present similar distances
to their closest neighbors:

7KD-Tree performance is close to brute force for vectors presenting large dimensions. SIFT vectors are 128-D and
SURF ones are 64-D. Before matching with KD-Trees, a dimensionality reduction procedure, as PCA, is recom-
mended. Sklearn and OpenCV provide PCA implementations.

170 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

Graffiti image

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

Shi-Tomasi GFTT

(a) (b)

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

SIFT

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

SURF

(c) (d)

Figure 7. (a) The Graffiti image [19]. (b) Features found by the Shi-Tomasi’s method [16],
plotted as points marked by crosses. (c) Features found by SIFT [17]. (d) Features found by
SURF [18]. The scatter function in Matplotlib was used to plot the features according to

their neighborhood (size).

RITA • Volume 22 • Número 1 • 2015 171

SciPy and OpenCV as an interactive computing environment for computer vision

In [26]: from scipy.spatial import cKDTree
In [27]: kdtree_j = cKDTree(D_j)

N_i = Di.shape[0]
d, nn = kdtree_j.query(D_i, k=2)
ratio_mask = d[:,0]/d[:,1] < 0.6
m = vstack((arange(N_i), nn[:,0])).T
m = m[ratio_mask]

A KD-Tree is created from the Nj vectors in the array Dj . The query method in the
KDTree object takes all vectors in Dj and the number of closest neighbors to be retrieved,
just two in this case (k = 2). The function returns two Ni × 2 arrays, d and nn, keeping the
distances and the neighbors indexes respectively. That means d[n][0] keeps the distance
between the n-th vector in Di and its closest neighbor, that is the element nn[n][0] in
Dj . A boolean max, ratio_mask is produced to select just the entries that obey the ratio
constraint. A Ni × 2 array is created, keeping in each row the indexes ni and nj , and ni-th
descriptor in Di matches the nj-th descriptor in Dj . This array m is produced by vstack, a
function that “stacks” arrays vertically; in this case, a row of indexes in Di followed by the
corresponding matching indexes in Dj .

Other procedure to reject bad matches is ensuring that a matched feature dj ∈ Dj

corresponds to a single feature di ∈ Di [20]. The code below implements this filtering:

h = {nj:0 for nj in m[:,1]}
for nj in m[:,1]:

h[nj] += 1
m = array([(ni, nj) for ni, nj in m if h[nj] == 1])

In the code above, h is a Python dictionary acting as a histogram, counting the number of
times the nj-th descriptor of Dj was matched to a descriptor in Di. The last line just keeps
the matches that are unique. Figure 8 shows the produced results for two images from the
Temple Ring dataset [21].

4.4 Linear algebra using scipy.linalg

Linear algebra is an essential mathematical tool for computer vision and machine
learning. It is particularly important in problems involving projective geometry as in multiple
view computer vision [22]. Consider a point Xi in 3-D, represented as a homogeneous 4-D
array, and a projective matrix P, represented as a 3× 4 array and corresponding to a camera.
The projection of Xi on the camera’s image plane, xi, can be elegantly coded as:

x = dot(P, X)

172 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

(a) (b)

(c)

Figure 8. Features matches for 3-D reconstruction. (a) and (b) Frames 34 and 36 from the
Temple Ring dataset [21]. (c) SIFT features detection and matching using the matching

criteria proposed by Lowe [17].

RITA • Volume 22 • Número 1 • 2015 173

SciPy and OpenCV as an interactive computing environment for computer vision

The dot function, for 2-D arrays, computes the matrix multiplication, and for 1-D arrays it
calculates the inner product of vectors. The pixel inhomogeneous coordinates can be recov-
ered using:

x_coord = x[0]/x[2]
y_coord = x[1]/x[2]

Estimation problems in projective geometry involve the solution of over-determined
systems of equations. More precisely, these problems are formalized as linear least-squares
resolutions of homogeneous systems of linear equations in the form Ax, minimizing ‖Ax‖
subject to ‖x‖ = 1 [22].

The minimization problem can be solved using singular value decomposition (SVD),
a matrix decomposition particularly useful in numerical computations. SVD decomposes A
as A = UDVᵀ and the x solution8 corresponds to the last columns of V.

Example 5 (Direct Linear Transform-based triangulation) Given two corresponding ho-
mogeneous points xi and xj , observed in images Ii and Ij respectively, and the projection
matrices Pi and Pj , we can estimate the 3-D point X in the scene associated to the pair
xi ↔ xj .

The point X could be estimated by back-projection of rays in the 3-D space. However, xi

and xj are imperfect measures and the back-projected rays would not perfectly intersect in X.
Such a problem can be formalized as a linear least-square problem in the system of equations
AX, where A is defined over xi, xj , Pi and Pj (see Section 12.2 of [22] for details). The
following code uses the SVD implementation in SciPy to perform the minimization, finding
an estimation for X:

In [18]: a0 = xi[0] * Pi[2,:] - Pi[0,:]
a1 = xi[1] * Pi[2,:] - Pi[1,:]
a2 = xj[0] * Pj[2,:] - Pj[0,:]
a3 = xj[1] * Pj[2,:] - Pj[1,:]

A = vstack((a0, a1, a2, a3))
U, s, VT = linalg.svd(A)
V = VT.T
X = V[:,-1]

Note that the last column of V can be indexed by −1. This procedure will be used again in
the structure from motion example in Section 7.
8The interested reader should refer to Chapter 4 and Appendix 5 of Hartley and Zimmerman’s book [22].

174 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

5 Machine learning with scikit-learn

The computer vision field relies strongly on machine learning methods and Bayesian
inference. Machine learning provides the learning and inference tools for fitting and pre-
dicting the world state from images in several vision problems. The scikit-learn toolbox (or
sklearn) is a machine learning package built on the SciPy Stack [23], developed by an inter-
national community of practitioners under the leadership of a team of researchers in INRIA,
France. It provides tools for regression, classification, clustering, dimensionality reduction,
parameter selection and cross-validation. Gaussian mixture models, decision trees, support
vector machines, and Gaussian processes are a few examples of the methods available to date.
Sklearn is able to evaluate an estimator’s performance and parameters by cross-validation,
optionally distributing the computation to several computer cores if necessary.

The sklearn module implements machine learning algorithms as objects that pro-
vide a fit/predict interface. The fit method performs learning (supervised or unsupervised,
according to the algorithm). The predict method performs regression or classification.
The learned model can be saved for further usage by pickle, the Python’s built-in persis-
tence model.

This tutorial will not provide a full view of all methods available in sklearn. Instead,
the basic usage will be illustrated by three examples on Naïve Bayes classification, mean-shift
clustering and Gaussian mixture models. For a broad and in-depth view on this module, the
reader should refer to the sklearn on-line documentation [24], which is rich in descriptions,
tutorials and code examples. Readers interest in machine learning and its applications in
vision should refer to Bishop’s [25] and Prince’s [5] books.

Example 6 (Skin detection using Naïve Bayes) In this example, Naïve Bayes classification
is employed to detect pixels corresponding to human skin through pixel color measurement.

Let training be aM×N×3 array representing a color training image in the CIE L* a* b*
color space, and mask aM×N binary array representing the manual classification skin/non-
skin. The Gaussian fitting for Naïve Bayes classification will just use the chromaticity data
(channels 1 and 2), avoiding lightness to influence on skin detection.

The data is composed by MN 2-D vectors, which are easily extracted from the train-
ing image using reshaping and slicing [see Figure 9 (a)]:

In [4]: data = training.reshape(M*N, -1)[:,1:]
data

Out[4]:
array([[128, 129],

RITA • Volume 22 • Número 1 • 2015 175

SciPy and OpenCV as an interactive computing environment for computer vision

[128, 129],
[128, 129],
...,
[127, 129],
[125, 134],
[123, 136]], dtype=uint8)

Similarly, the manual classification [Figure 9 (b)] used in the learning step is represented as
a binary MN vector:

In [5]: target = mask.reshape(M*N)
target

Out[5]:
array([0., 0., 0., ..., 0., 0., 0.])

Sklearn provides a naive_bayes module containing a GaussianNB object that imple-
ments the supervised learning by the Gaussian Naïve Bayes method. As previously discussed,
this object presents a fit method that performs the learning step:

In [6]: from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(data, target)

Skin detection can be performed converting the input image [Figure 9 (c)] to the L* a* b*
color space, and then reshaping and slicing in the same way as the training image. The
predict method of GaussianNB performs the classification. The resulting classification
vector can be reshaped to the original image dimensions for visualization [Figure 9 (d) and
(e)]:

In [7]: test_bgr = cv2.imread(’../data/thiago.jpg’)
test = cv2.cvtColor(test_bgr, cv2.COLOR_BGR2LAB)
M_tst, N_tst, _ = test.shape

In [8]: data = test.reshape(M_tst * N_tst, -1)[:,1:]
skin_pred = gnb.predict(data)
S = skin_pred.reshape(M_tst, N_tst)

Example 7 (Color segmentation using mean-shift clustering) In this example, the mean-
shift algorithm [26] is employed to perform color segmentation, grouping similar colors to-
gether (color quantization).

176 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

(a) (b)

(c) (d) (e)

Figure 9. Skin classification using Naïve Bayes. (a) Training image. (b) Binary
classification used in supervised learning. (c) Input image to skin detection. (d) Naïve Bayes

classification results. (e) Classification results and the input image shown together.

RITA • Volume 22 • Número 1 • 2015 177

SciPy and OpenCV as an interactive computing environment for computer vision

This clustering procedure relies on the Euclidean distance between the feature vectors; in this
case the pixels’ color triplets. A perceptually uniform color space is more suitable to this
task, once in such a space the Euclidean distances between triplets approximate the human
perceptual differences. In this example, the L*a*b space is employed again. A view on the
image is produced by reshaping, transforming the M × N array in a sequence of MN 3-D
vectors:

In [2]: I = cv2.imread(’../data/BSD-118035.jpg’)
I_Lab = cv2.cvtColor(I, cv2.COLOR_BGR2LAB)
M, N, _ = I_Lab.shape

In [3]: X = I_Lab.reshape(M*N, -1)
X

Out[3]:
array([[33, 121, 120],

[33, 121, 120],
[33, 121, 120],
...,
[122, 122, 118],
[125, 122, 120],
[38, 122, 126]], dtype=uint8)

The mean-shift implementation in sklearn employs a flat kernel defined by a band-
width parameter. The bandwidth can be automatically selected by sampling the color dis-
tances between pixels in the input image and taking an arbitrary quantile selected by the user
(larger quantiles generate bandwidths that produce fewer clusters). This procedure is imple-
mented by the estimate_bandwidth function. Finally, the fit method is employed to
perform the unsupervised learning:

In [4]: from sklearn.cluster import MeanShift
from sklearn.cluster import estimate_bandwidth

In [5]: b = estimate_bandwidth(X, quantile=0.1, n_samples=2500)
ms = MeanShift(bandwidth=b, bin_seeding=True)
ms.fit(X)

The labels_ attribute keeps the cluster attributed to each pixel, and the cluster_centers_
attribute stores the center value for each cluster. These centers are the quantized colors and
will be employed on the visualization:

178 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

In [6]: S = zeros_like(I)
L = ms.labels_.reshape(h, w)
num_clusters = ms.cluster_centers_.shape[0]
for c in range(num_clusters):

S[L == c] = ms.cluster_centers_[c]
imshow(cv2.cvtColor(S, cv2.COLOR_LAB2RGB))

Figure 10 shows clustering results9 for three images from the Berkeley Segmentation Dataset
[28].

Example 8 (Background subtraction using Gaussian mixture models) The background of
a video sequence is modeled using mixtures of Gaussians and further employed to classify
people and objects as foreground.

Let V be a T ×MN × 3 array representing a video sequence composed by T frames.
Each frame is a M × N color image (pixels’ values are color triplets). The background
model is composed by MN mixtures of K multivariate Gaussians. Stauffer and Grimson
[29] proposed the use of Gaussian mixtures for background modeling because they are a
simple and convenient way to represent multimodal distributions. Scenes in video sequences
can present some sort of dynamic background, an issue commonly referred to as the “waving
trees” problem [30], and multimodal distributions are a better way to represent this variation.

Each one of the MN pixels is represented by a Gaussian mixture model (GMM).
In the code below, Python’s list comprehension is used to instantiate MN GMM objects and
immediately perform the fitting. Such a code works because the fit method returns the
calling GMM object. Three Gaussians are being used (K = 3), letting each model represents
up to 3 modes in a background distribution. The learning is performed using frames Vt
constrained to the instants t ∈ [600, 749], a segment of the input video presenting an empty
scene, without people or moving objects.

In [15]: K = 3
MN = M * N
bgmodel = [GMM(n_components=K).fit(V[600:750,i])

for i in range(MN)]

After fitting, the Gaussians’ means and weights can be recovered:

9In this example, just the pixel color was employed, resulting in color quantization. To perform spatial-color seg-
mentation as proposed by Comaniciu and Meer [27], a multivariate kernel is needed. To the date, multivariate kernels
are not available in sklearn’s mean-shift implementation.

RITA • Volume 22 • Número 1 • 2015 179

SciPy and OpenCV as an interactive computing environment for computer vision

0 100 200 300 400

0

50

100

150

200

250

300

(a)

0 100 200 300 400

34 clusters

0

50

100

150

200

250

300

(b)

0 100 200 300 400

7 clusters

0

50

100

150

200

250

300

(c)

0 100 200 300 400

0

50

100

150

200

250

300

0 100 200 300 400

7 clusters

0

50

100

150

200

250

300

0 100 200 300 400

2 clusters

0

50

100

150

200

250

300

0 100 200 300 400

0

50

100

150

200

250

300

0 100 200 300 400

11 clusters

0

50

100

150

200

250

300

0 100 200 300 400

3 clusters

0

50

100

150

200

250

300

Figure 10. Mean-shift based color segmentation. (a) Input images from the Berkeley
Segmentation Dataset [28]. The bandwidth parameter is selected evaluating the distances
among 2,500 sample pixels and taking a quantile. (b) Mean-shift clustering results using a

5% quantile. (c) Results employing a 20% quantile.

180 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

In [21]: bg_mean = array([gmm.means_ for gmm in bgmodel])
bg_weight = array([gmm.weights_ for gmm in bgmodel])

For classification of a frame Vt, the predict method should be called by the GMM object of
each pixel:

In [25]: c = array([bgmodel[i].predict([V[t,i]])
for i in range(N)])

In [26]: pmean = array([bgmodel[i].means_[c[i]]
for i in range(MN)])

pcov = array([bgmodel[i].covars_[c[i]]
for i in range(MN)])

Here, the prediction step just selects one of the K Gaussians, ci, as the proper model to the i-
th pixel. Note that the code above also recovers the mean and the covariance matrix of ci. The
pixel is declared background if (i) the weight of ci is above a threshold selected by the user
(or defined using supervised learning) and (ii) if the difference between the observed pixel
and the mean of ci is under a confidence interval, defined using the covariance matrix in ci.
The criteria in (i) evaluates if such a Gaussian is really modeling the background distribution
or if it just captured moving objects or noise. The criteria in (ii) can be easily implemented
as:

In [40] stmt = abs(V[t] - pmean) < 2. * sqrt(pcov)

Figure 11 presents the result for background classification in 1000-th frame of the Left Bag
video sequence in the CAVIAR dataset [31].

6 Performance and HPC

Low-level code written in Python, as looping in big arrays, can be slow, mainly be-
cause Python is dynamically typed and interpreted. However, in the scientific computing
environment described above, this is rarely a problem: the OpenCV interface just access op-
timized C/C++ code, and the software in SciPy Stack relies on a base of numerical software
implemented in C/C++ and Fortran, including the efficient NumPy arrays.

But in the few situations where a low-level looping must be implemented (if the task
cannot be implemented using NumPy capabilities) or the functionality of a external library is
needed, Cython [32] raises as an alternative. Cython is a static compiler capable of working

RITA • Volume 22 • Número 1 • 2015 181

SciPy and OpenCV as an interactive computing environment for computer vision

(a) (b) (c)

Figure 11. Background subtraction using Gaussian Mixture Models. (a) Input frame from
the Left Bag sequence in the CAVIAR dataset. (b) Result of the background subtraction. (c)

Background subtraction result and the input frame shown together.

in a super-set of the Python language that supports C-like static type declarations. It compiles
Python code to C, further producing a Python module that can be imported and used from
the interpreter. As noted by Behnel et al. [32], the key idea behind Cython is the Pareto
Principle, also known as the “80/20 rule”: 80% of the run-time is spent in 20% of the source
code. Cython’s goal is to speed up the critical parts of the code while avoiding too much
overhead on coding by the programmer.

Other performance issues can be addressed by parallelization. IPython.parallel is a
powerful architecture for parallel and distributed computing which supports different styles
of parallelism, such as single program, multiple data (SPMD) and multiple program, multiple
data (MPMD). Parallel applications can be easily developed, executed and monitored inter-
actively from the IPython shell. Computer vision tasks can involve large sets of images or big
point clouds, but many times the parallelization of these tasks is trivial: it can be implemented
in a few lines of code with IPython.parallel. The dynamic load balancing feature allows the
use of all the available processing threads in the computer or all the processing power avail-
able in a cluster, but keeping the interactive computing environment free from large amounts
of specific code for parallel computing.

Example 9 (Processing a bundle of images in parallel) In this example, SIFT descriptors
of a reference image I1 are computed. Then, descriptors are extracted for every image In in
a list, and the matches to I1 descriptors are computed. The processing of the list is done in
parallel, using all the available cores in the user’s machine.

Let D1 be an array containing the descriptors of I1. In a system shell, an IPython cluster for
parallel computing is started as follows:

ipcluster start --n=8

182 RITA • Volume 22 • Número 1 • 2015

SciPy and OpenCV as an interactive computing environment for computer vision

Eight nodes are started (in this example, the number of clusters is selected based on the
number of cores available in the user’s machine). Back to the IPython shell, the next step is
the creation of a Client object. A LoadBalancedView object is created to provide a
load-balanced parallel execution:

In [3]: from IPython.parallel import Client
rc = Client()
lview = rc.load_balanced_view()

Next, a Python decorator is used to define a parallel function that computes the de-
scriptors and the matches (the decorator starts with a “@” symbol). The function below
takes a path to an image in the file system, computes the SIFT features and uses OpenCV’s
BFMatcher to get the matches to D1, returning the number of matches found and the im-
age’s path:

In [4]: @lview.parallel()
def get_num_matches(arg):

fname, D_src = arg
import cv2
frame = cv2.imread(fname, cv2.IMREAD_GRAYSCALE)
sift = cv2.SIFT(nfeatures=5000)
_, D = sift.detectAndCompute(frame, mask=None)
matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = matcher.match(D_src, D)

return fname, len(matches)

IPython capability to access the system’s shell is employed to list all the files in a direc-
tory and store the file paths in a list of strings, fnames. Finally, the map function calls
get_num_matches to every string in the fnames list, automatically performing the load
balance on the nodes:

In [5]: fnames = !ls /tmp/templeRing/temple*.png
args = [(fname, D_1) for fname in fnames]
async_res = get_num_matches.map(args)

In [6]: for f, n in async_res:
print f, n

Out [6]:
/tmp/templeRing/templeR0001.png 802
/tmp/templeRing/templeR0002.png 549

RITA • Volume 22 • Número 1 • 2015 183

SciPy and OpenCV as an interactive computing environment for computer vision

/tmp/templeRing/templeR0003.png 491
...
/tmp/templeRing/templeR0045.png 448
/tmp/templeRing/templeR0046.png 454
/tmp/templeRing/templeR0047.png 459

This simple example is able to explore all the available cores in the local machine, just
asking for a few extra lines of code. But the parallel computing capabilities in IPython go far
beyond, supporting SPMD and MPMD parallelism and the use of StarCluster for execution
in Amazon Elastic Compute Cloud (Amazon EC2)10.

7 A complete case: structure from motion

The last example in this tutorial combines different packages to solve a structure from
motion problem [22, 33] in two images. It starts using OpenCV to detect SIFT features
and their descriptors [17]. Scikit-learn’s implementation of PCA is employed to reduce the
dimensionality of the descriptors and the KD-Trees in the SciPy library are then used to ef-
ficiently find features matches. From the found matches, the fundamental matrix between
the pair of images is computed using OpenCV, and linear algebra procedures from SciPy
are employed to compute the essential matrix and retrieve valid projection matrices [22, 34].
Finally, SVD decomposition, implemented in scipy.linalg, is used to perform triangu-
lations and estimate a 3-D point for each pair of matching features. The code and comments
are available online11 as an IPython notebook. Figure 12 shows the result for a pair of frames
in the Temple Ring dataset [21].

8 Conclusion

In his book, Prince [5] argues that computer vision should be understood in terms
of measurements (images), world state, model (defining the statistical relationships between
the observations and the world), parameters, and learning and inference algorithms. The
presented environment can address all these elements in modern computer vision R&D.

Other interactive environments also provides image processing and computer vision
capabilities. MATLAB R© is a famous comercial alternative that also provides a notebook-like
functionality. But the Python environment has attracted users because it is free, open-source

10The interested reader is referred to the section Using IPython for parallel computing in the IPython documentation
– http://ipython.org/documentation.html.
11http://nbviewer.ipython.org/github/thsant/scipy4cv

184 RITA • Volume 22 • Número 1 • 2015

http://ipython.org/documentation.html
http://nbviewer.ipython.org/github/thsant/scipy4cv

SciPy and OpenCV as an interactive computing environment for computer vision

(a) (b) (c)

Figure 12. Results for a 3-D reconstruction from 2-D features matches. (a) Frame from the
Temple Ring dataset [21] – the estimated three-dimensional points Xi are projected using

the estimated projection matrix P. (b) and (c) Recovered 3-D model showing different views
of the point cloud Xi. Each point is plotted with the same color in the three images.

and based in a general-purpose language. It probably has the best-designed of the digital
notebooks to date [35, 36].

The large Python community keeps the environment evolving. For example, in the
raising field of deep learning vision, packages as Pylearn2 [37] and Theano [38] are promising
new tools that could become an important part of the Python ecosystem for computer vision
and scientific computing in a near future.

A Installation

As a general guideline, users should always consider the most recent installation in-
structions provided by the packages’ maintainers12. Currently, Windows, Mac and Linux
users could consider Anaconda, the Continuum Analytics distribution13, as one of the easi-
est ways to get all the environment presented in this tutorial. Linux users can also use the
package manager of their systems to effortless download and install the components (as the

12See http://www.scipy.org/install.html
13Available at http://continuum.io/downloads

RITA • Volume 22 • Número 1 • 2015 185

http://www.scipy.org/install.html
http://continuum.io/downloads

SciPy and OpenCV as an interactive computing environment for computer vision

apt-get system in Debian/Ubuntu distributions). The pip tool14 is also a practical way to get
the packages and keep them updated:

$ pip install ipython scipy scikit-learn

B IPython initialization

The IPython default console can be started using:

$ ipython

Other options are the Qt based console and the notebook mode:

$ ipython qtconsole
$ ipython notebook

The -pylab option loads Matplotlib and NumPy for interactive use:

$ ipython qtconsole --pylab
$ ipython notebook --pylab

To enable plotting in the browser for notebooks or inside the graphical window for the
Qt console (inline plotting), users can execute:

$ ipython notebook --pylab=inline
$ ipython qtconsole --pylab=inline

References

[1] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research in signal process-
ing,” Signal Processing Magazine, IEEE, vol. 26, no. 3, pp. 37–47, May 2009.

[2] P. Greenfield, T. Miller, J.-C. Hsu, and R. L. White, “An Array Module for Python,”
in Astronomical Data Analysis Software and Systems XI, ASP Conference Proceedings,
D. A. Bohlender, D. Durand, and T. H. Handley, Eds., vol. 281, San Francisco, 2002,
pp. 140–143.

14See https://pypi.python.org/pypi/pip

186 RITA • Volume 22 • Número 1 • 2015

https://pypi.python.org/pypi/pip

SciPy and OpenCV as an interactive computing environment for computer vision

[3] T. E. Oliphant, “Python for Scientific Computing,” Computing in Science & Engineer-
ing, vol. 9, no. 3, pp. 10–20, 2007.

[4] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for
Efficient Numerical Computation,” Computing in Science & Engineering, vol. 13, no. 2,
pp. 22–30, Mar. 2011.

[5] S. J. D. Prince, Computer Vision: Models, Learning and Inference. Cambridge Uni-
versity Press, 2012.

[6] F. Pérez and B. E. Granger, “IPython: A System for Interactive Scientific Computing,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 21–29, 2007.

[7] C. Davidson-Pilon, Probabilistic Programming and Bayesian Methods for Hackers,
2013.

[8] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Li-
brary, 1st ed. O’Reilly Media, Oct. 2008.

[9] R. Laganière, OpenCV 2 Computer Vision Application Programming Cookbook: Over
50 Recipes to Master this Library of Programming Functions for Real-Time Computer
Vision. Packt Publishing, 2011.

[10] D. L. Baggio, S. Emami, D. M. Escrivá, K. Ievgenm, N. Mahmood, J. Saragih, and
R. Shilkrot, Mastering OpenCV with Practical Computer Vision Projects. Packt Pub-
lishing, 2012.

[11] M. Marengoni and D. Stringhini, “Tutorial: Introdução à Visão Computacional usando
OpenCV,” Revista de Informática Teórica e Aplicada - RITA, vol. 16, no. 1, pp. 125–
160, 2009.

[12] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-Time Computer Vision
with OpenCV,” Communications of the ACM, vol. 55, no. 6, pp. 61–69, Jun. 2012.

[13] OpenCV 2.4.9.0 documentation. [Online]. Available: http://docs.opencv.org

[14] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[15] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & En-
gineering, vol. 9, no. 3, pp. 90–95, 2007.

[16] J. Shi and C. Tomasi, “Good-Features to Track,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition CVPR-94. IEEE Comput. Soc. Press, 1994,
pp. 593–600.

RITA • Volume 22 • Número 1 • 2015 187

http://docs.opencv.org

SciPy and OpenCV as an interactive computing environment for computer vision

[17] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[18] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),”
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, Jun. 2008.

[19] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey,” Foun-
dations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177–280, 2007.

[20] N. Snavely, S. Seitz, and R. Szeliski, “Modeling the World from Internet Photo Col-
lections,” International Journal of Computer Vision, vol. 80, no. 2, pp. 189–210, Nov.
2008.

[21] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A Comparison and
Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1, June 2006,
pp. 519–528.

[22] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, Apr. 2004.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[24] Documentation of scikit-learn 0.15. [Online]. Available: http://scikit-learn.org/stable/
documentation.html

[25] C. M. Bishop, Pattern Recognition and Machine Learning. Springer New York, 2006,
vol. 1.

[26] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[27] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space anal-
ysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5,
pp. 603–619, May 2002.

[28] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics,” in Proc. 8th Int’l Conf. Computer Vision, vol. 2, July 2001, pp.
416–423.

188 RITA • Volume 22 • Número 1 • 2015

http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/documentation.html

SciPy and OpenCV as an interactive computing environment for computer vision

[29] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time track-
ing,” in Computer Vision and Pattern Recognition, IEEE Computer Society Conference
on, vol. 2. Fort Collins, CO, USA: IEEE Computer Society, Aug. 1999, Conference
proceedings (article), pp. 246–252.

[30] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice
of background maintenance,” in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 1, 1999, Conference proceedings (whole), pp.
255–261 vol.1.

[31] R. C. Fisher, “CAVIAR: Context Aware Vision using Image-Based Active
Recognition.” [Online]. Available: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

[32] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, “Cython:
The Best of Both Worlds,” Computing in Science & Engineering, vol. 13, no. 2, pp.
31–39, Mar. 2011.

[33] D. Scaramuzza and F. Fraundorfer, “Visual Odometry [Tutorial],” IEEE Robotics &
Automation Magazine, vol. 18, no. 4, pp. 80–92, Dec. 2011.

[34] D. Nister, “An efficient solution to the five-point relative pose problem,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 756–770, Jun.
2004.

[35] H. Shen, “Interactive Notebooks: Sharing the Code,” Nature, vol. 515, no. 7525, pp.
151–152, Nov. 2014.

[36] J. M. Perkel, “Programming: Pick up Python,” Nature, vol. 518, pp. 125–126, 2015.

[37] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu,
J. Bergstra, F. Bastien, and Y. Bengio, “Pylearn2: a machine learning research library,”
p. 9, Aug. 2013.

[38] J. Bergstra, O. Breuleux, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-
farley, and Y. Bengio, “Theano: A CPU and GPU Math Compiler in Python,” in Pro-
ceedings of the 9th Python in Science Conference (SCIPY 2010), 2010, pp. 1–7.

RITA • Volume 22 • Número 1 • 2015 189

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

	Introduction
	Why is an interactive environment important to computer vision?

	The IPython shell
	The IPython Notebook

	OpenCV
	SciPy Stack
	NumPy
	Images as NumPy arrays
	Indexing and slicing
	Image ROIs and array views

	Matplotlib
	OpenCV imshow vs. Matplotlib imshow

	The SciPy Library
	Linear algebra using scipy.linalg

	Machine learning with scikit-learn
	Performance and HPC
	A complete case: structure from motion
	Conclusion
	Installation
	IPython initialization

