
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 25, Num. 2 (2018) 93-100

RESEARCH ARTICLE

Relative Scalability of NoSQL Databases for Genotype
Data Manipulation
Escalabilidade Relativa de Bancos de Dados NoSQL para Manipulação de Dados de
Genótipo

Arthur Lorenzi Almeida1, Vinı́cius Junqueira Schettino2, Thiago Jesus Rodrigues Barbosa2,
Pedro Fernandes Freitas1, Pedro Gabriel da Silva Guimarães2, Wagner Arbex3*

Abstract: Genotype data manipulation is one of the greatest challenges in research fields such as population
genetics, bioinformatics and genomics mainly because of high dimensionality and unbalancing characteristics.
These peculiarities explain why relational database management systems (RDBMS), the ”de facto” standard
storage solution, have not been presented as the best tools for this kind of data. However, the Big Data advent
has been pushing the development of modern database systems that might be able to overcome RDBMS
deficiencies. In this context, we extended our previous works on the evaluation of relative performance among
NoSQLs engines from different families, adapting the schema design in order to achieve better performance
based on its conclusions, thus being able to store more SNP markers for each individual. Using Yahoo! Cloud
Serving Benchmark (YCSB) benchmark framework, we assessed each database system over hypothetical
genotype data (SNP markers). Results indicate that Tarantool is approximately 21,8% more efficient than
MongoDB when storing 770,000 SNP markers, but MongoDB is less impacted by the increase of SNP markers
per individual.

Keywords: Database — NoSQL — Bionformatics — Data Science — SNP, Genotype

Resumo: A manipulação de dados de genótipo é um dos maiores desafios em áreas de pesquisa como genética
de populações, bioinformática e genômica, principalmente devido às caracterı́sticas de alta dimensionalidade e
desbalanceamento. Essas peculiaridades explicam por que os sistemas de gerenciamento de bancos de dados
relacionais (SGBDR), a solução padrão ”de fato” de armazenamento, não se apresentam como as melhores
ferramentas para esse tipo de dados. Todavia, o advento do Big Data tem impulsionado o desenvolvimento
de sistemas de bancos de dados modernos que podem superar deficiências de SGBDR. Neste contexto,
estendemos nossos trabalhos anteriores sobre a avaliação do desempenho relativo entre os mecanismos
NoSQLs de diferentes famı́lias, adaptando a proposta do esquema para obter melhor desempenho com base
em suas conclusões, podendo armazenar mais marcadores SNP para cada indivı́duo. Usando o Yahoo!
Cloud Serving Benchmark (YCSB), avaliamos cada sistema de banco de dados sobre genótipos hipotéticos
(marcadores SNP). Os resultados indicam que o Tarantool é aproximadamente 21,8% mais eficiente que o
MongoDB ao armazenar 770.000 marcadores SNP, mas o MongoDB sofre menos impacto com o aumento de
marcadores SNP por indivı́duo.

Palavras-Chave: Banco de Dados — NoSQL — Bionformática — Ciência de Dados, SNP — Genótipo
1Department of Computer Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
2Postgraduate Program in Computer Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
3Federal University of Juiz de Fora and Brazilian Agricultural Research Corporation, Juiz de Fora, MG, Brazil
*Corresponding author: wagner.arbex@{ufjf.edu.br, embrapa.br}
DOI: http://dx.doi.org/10.22456/2175-2745.79334 • Received: 02/01/2018 • Accepted: 20/04/2018
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



1. Introduction
Conducting research on genotypes of entire populations presents
the challenge of storing data in a structured manner with the
guarantee of durability. This challenge extends to groups that
design and develop computational tools, analysis pipelines or
aggregated databases of this kind of data [1]. High dimension-
ality is the main reason why most database solutions do not
handle genotype data efficiently. Big Data, however, pushed
the development new database technologies designed under
different premises; these systems are being called NoSQL
databases.

The exact definition of a NoSQL database has not reached
a consensus yet, despite the fact that the ”NoSQL” buzzword
stands for ”Not only SQL”. Nevertheless, A more appropriate
description includes the traits shared among databases classi-
fied as NoSQL: (i) horizontal scalability over many servers;
(ii) data replication and partitioning; (iii) simple call inter-
faces; (iv) weak concurrency model; (v) distributed indexes
and usage of RAM and (vi) less rigid schemas [2].

For NoSQL databases, a weak concurrency model is gen-
erally considered advantageous because it facilitates the de-
velopment of distributed systems (which increases scalability
and availability) and processing of huge amounts of data. This
kind of concurrency model is usually based on CAP theorem’s
assertion that it is impossible for a distributed data store to
guarantee consistency, availability and partition tolerance at
a given time (at best two of these can be provided simul-
taneously). This whole design premises are very different
from the ACID (Atomicity, Consistency, Isolation, Durability)
transactions observed in relational databases engines, that are
suitable for most applications but a drawback when in cases
that they are not needed, such as dealing with flexible schemas
and unstructured data [3].

Some forms exist to represent an individual’s genome,
SNP genotyping is one of the most common and uses a subset
of the genome, more specifically a set of known SNP markers,
as representative. SNP stands for single-nucleotide polymor-
phism, a variation in a nucleotide in a specific position of
the genome, and is the most common type of variation in
humans. This variation must be present in at least a certain
portion of the population, usually 1%. Since the vast majority
of SNPs are bi-allelic, a common representation considers
three possible pairs of alleles, one for homozygous dominant
(AA), one for homozygous recessive (BB) and the last one for
heterozygous (AB)[4].

The importance of SNP markers comes mainly from their
application on association studies and haplotype mapping
[5, 6], which can identify SNPs – or possibly alleles when
SNP is in a coding region of the DNA – related to phenotypic
traits, especially diseases. When the SNP is tightly related to a
gene, i.e., the specific SNP nitrogenous base can be mapped to
an allele, the genetic code of an individual can be represented
by the pair of alleles existent for each SNP.

There are many techniques to identify SNPs, but SNP
genotyping only became popular in the last 15 years when se-

quencing cost was greatly reduced by new methodologies [7].
Current technologies are usually divided into low, medium
and high density based on the arrays used to detect SNPs. A
higher density implies in more markers identified and con-
sequently a more precise representation of genetic variation.
This difference in granularity can range from a few thousands
of markers (e.g., 3000 SNPs) to over 1.5 million SNPs for a
single individual.

As genotyping services become more accessible, projects
can opt to use denser genotypes and increase populations sizes
on studies. Naturally, it is possible that the average density
used in experiments will increase, which leads to the need for
suitable infrastructures to manipulate and store SNP markers
and related metadata, especially phenotype data.

Motivated by this scenario, this work aims to evaluate
the relative scalability of different NoSQL databases when
handling genotype data, extending our previous study regard-
ing the performance of four database management systems
(DBMS) – Tarantool, MongoDB, OrientDB and HBase [8].
These specific systems were chosen because of their differ-
ences between each other.

Tarantool is the representative of key-value stores and
also an in-memory database, MongoDB is document based,
HBase’s data model supports column families and OrientDB
is a multi-model DBMS who supports graph, document, key-
value and object storage in one core, making it extremely
versatile. Each type of storage is generally considered to be
a NoSQL ”family” and in fact, more of them exist [9]. We
opted to consider only those four because their families are
the most popular [10] and their data models seemed to be
more appropriate to SNP handling.

2. Related Work
In a previous work, we have approached the relative perfor-
mance of NoSQL engines for genotype data manipulation
topic [8]. The main objective of that study was to experiment
with NoSQL engines to determine whether they were suitable
to genotype data manipulation and which data model would
be more efficient in doing that. In the obtained results, Taran-
tool proved to be more efficient than MongoDB by a large
margin and it was confirmed that non-tabular databases can
be a very good option for this kind of data. However, results
needed to be expanded as they lacked any scalability evalu-
ation, an important aspect to be considered since genotype
databases are constantly growing. Furthermore, each database
was evaluated within two scenarios, one to measure insertion
performance and the other to assess reads and updates. These
scenarios do not adequately represent real use-cases, as we
explain in subsection 3.3. Finally, previous results did not
encompass OrientDB and HBase, decreasing its conclusion’s
scope.

Others recent works explored the benefits of NoSQL en-
gines in genotype data handling. The work [11] explores
features commonly found on NoSQL databases to propose a
tool for managing genomic, transcriptomic and genotyping



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

Table 1. NoSQL engines characteristics summary
System Data model Main features Written in Licensing

HBase Column family • High fault tolerance Java Apache License 2.0• Built on a distributed FS
MongoDB Document-based • Ad hoc queries C++ GNU Affero GPL

OrientDB Multi-model
• Multiple schema modes

Java Apache License 2.0• SQL interface
• ACID transactions

Tarantool Key-value store
• In-memory storage

C and Lua BSD 2.0• Write-ahead logging
• ACID transactions

data, although the work does not present a comparison be-
tween their tool and other nonrelational engines or families.
Some of the challenges related to the storage of genotype and
phenotype data in a real project are exposed by [12]. Although
the study encompasses more structural components than only
database systems, it highlights the presences of irregular data
models, the heterogeneous nature of the data and the need for
flexible schemas.

3. Materials and Methods
In order to evaluate the performance of NoSQL databases
when handling SNPs, the experiment was conducted using a
five-step process: (i) selection of a set of databases to represent
the most common NoSQL families; (ii) schema modeling for
each system; (iii) definition of workloads that are similar
to real cases of SNP data manipulation; (iv) execution of the
workloads in each database (v) analysis of the obtained results.
This section will explore each of these steps in detail.

3.1 Database selection
The selection of NoSQL families representatives was done
firstly considering which data models could fit SNP data and
were, in general, more popular. Document, key-value and
wide column stores have been receiving more attention from
the database community than more specialized solutions such
as RDF and time series databases [10].

Apache HBaseTM was selected as the representative of
column families due to its popularity. This database is writ-
ten in Java designed and runs over Hadoop, a distributed file
system. The system aims to offer a highly scalable and fault
tolerant store over a cluster of commodity hardware. HBase is
distributed under offers features such as sharding, consistent
reads and writes and failover support [13]. HBase was eval-
uated using its 0.98.24 version over Hadoop 2.5.2 and used
pre-splitting of regions, as recommended by HBase develop-
ers.

MongoDB is a distributed database designed to store data
in JSON-like documents and the example of a document store
for this experiment. The presence of JSON data structures in
languages such as JavaScript and Python, make this database
a good option for many software projects. Given that fact
and that it is published under GNU Affero General Public
License [14], it is reasonable that MongoDB is ranked as

the most popular nonrelational engine [10]. It also supports
field and range queries, regular expressions searches and user-
defined JavaScript functions. MongoDB is written in C++
and in this work, version 3.2.13 was used without additional
configurations to the server or client.

To increase the variety of systems used in the experiment
and also evaluate how a multi-model database performs, Ori-
entDB was included in the benchmarking process. It supports
both graph and document-based database models, the lat-
ter supposedly been more attractive to store SNP sequences.
OrientDB can also handle data in schema-less, schema-full
and schema-mixed modes, has a SQL interface and supports
ACID transactions. Written mainly in Java and under the
Apache License 2.0, it is described ”The first and best scal-
able, high-performance, operational NoSQL database” [15].
In this experiment, version 2.2.10 was used with default con-
figurations.

Tarantool is an open-source (BSD 2.0) in-memory DBMS
that uses write-ahead logging to achieve durability and atom-
icity and also supports SQL querying. Its main core languages
are C and Lua. As others key-value engines, as Redis and
Amazon ElastiCache, it presents features including sharding
and load balancing [16]. Tarantool is expected to have the
best results on this experiment, due to its in-memory imple-
mentation, although a larger consumption of RAM memory
is also expected. By default, the system allocates up to 1MB
for each tuple and 256MB for total storage, but due to the
nature of SNP data and seeking to simulate a more realistic
environment, these values were increased to 2MB and 12GB,
respectively. We do acknowledge the constraints of using
an in-memory database, especially its greatly reduced cost-
effectiveness for larger sets of data due to size limitations. In
the context of our experiment, specifically when taken into
consideration the dimensions of the database and hardware
used, these disadvantages are not very significant. Tarantool
was chosen as the key-value database representative in this
experiment, despite the fact that is Redis is a more popular
in-memory key-value store. Tarantool was included mainly
because it had a very good performance in our previous bench-
marks.

The unique main features of cited NoSQL engines are
highlighted in table 1 along with some other characteristics.
Features such as sharding and horizontal scaling are absent in

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.95/100 • 2018



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

(a) JSON document model with a single
level storing all SNP values

(b) Mapping of SNPs to values used in
key-value stores

(c) Column family model where all columns belong to the same family
Figure 1. Data models used on experiments

the table because they are shared between all systems.

3.2 Schema modeling
A database schema design significantly affects the imple-
mented system’s performance; therefore, properly modeling
is necessary to a valid database benchmark assessment. The
chosen databases were evaluated over a hypothetical popula-
tion where each individual was associated with a sequence of
values that represented their genotype. Each position in these
sequences informed the sample’s pair of alleles for a specific
SNP and since a pair of alleles can be homozygous dominant,
homozygous recessive or heterozygous, the domain of these
sequences consisted of only three values.

A collection of SNP sequences naturally fits a relational
model where each column stores one or more SNPs and rows
represent a single individual. Non-tabular models, however,
can handle this kind of data in a simpler and more beneficial
manner because they support flexible schemas. A research
project could, for example, store individuals’ genotypes ob-
tained from distinct sources or generated by different technolo-
gies in the same space of a database. In this evaluation, three
alternatives to classical relational models were considered:
document based, key-value stores and column families.

In the database context, a document usually refers to JSON
or XML files. These files can be represented as trees where
a node’s child can be a primitive value or another tree. Both
MongoDB and OrientDB use a JSON-like document format
that requires a key for each attribute (or simply child node).
To store SNP sequences, the ability to increase a tree’s depth
is not needed since the individual’s alleles are always repre-
sented by primitive data, thus making the document a structure
that maps keys to values, similarly to a hash table. The docu-
ment should hold all data related to an individual, like a row
in RDBMS, and be part of a document collection to allow
database administrators to cluster related documents as they
see fit. Indexing is done in the scope of collections to allow
fast retrieval of documents.

For key-value stores, such as Tarantool, modeling is very
straightforward: each stored value must be related to a key. A
set of these key-value pairs can be assembled into a tuple that
should be stored in a space similar to a document collection
that also holds indexes. In the context of this experiment, each
tuple stores data from a single individual, each pair represents
an SNP identification and its value for an individual.

Finally, in wide column stores, the concepts of tables are
still present. The differences to relational databases are more

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.96/100 • 2018



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

present in implementation than modeling. In this model, rows
store data of a single individual while columns represent the
values for each SNP and are clustered into groups called col-
umn families. Column families allow the creation of columns
groups that should contain similar search and modifications
patterns, they can also change the way a table is stored in the
disk, affecting performance. In the context of this study, there
were no benefits in dividing columns into different column
families because reads encompassed all fields of a row, so a
single family was defined.

A visual representation of the adopted models is presented
in Figure 1.

3.3 Workload definition
The next steps after the selection of database engines and mod-
eling of schemas were the definition of suitable workloads
and their execution. Both of this steps were conducted using
The Yahoo! Cloud Serving Benchmark (YCSB), a framework
developed to facilitate performance comparisons of cloud data
serving systems [17]. YCSB is heavily based on the modu-
larity and extensibility design principles, making it possible
to add support for new systems or benchmarking techniques
without changes to its core module. Most of the supported
data serving systems are classified as NoSQL, corroborating
to our choice of using this software for the experiment. The
benchmark tool also became vastly used in the industrial and
academic fields for comparing NoSQL databases [18, 19, 20].
It is distributed under the Apache License 2.01 and its source
code can be found on Github2

YCSB architecture is centered on measuring throughputs
and latencies of user-defined workloads described on files that
can be reused for multiple database systems. A workload
definition consists of not only operations to be executed, but
data characteristics such as the number of records, fields and
its size. Using these pieces of information, YCSB is able to
simulate real databases, avoiding the need to support different
input formats of real data. Concerning the operations used
in the benchmarking process, a workload must define the
number of operations to be executed and the proportion of
each type, which can be inserts, reads, updates and scans.
When reading/scanning records, a distribution can be defined
to select records. All results presented in this paper were
obtained using a uniform distribution, meaning that all records
had the same probability of being read during measurement.

The first step taken to create our workloads was choosing
which operations were, in general, most relevant to popula-
tion genetics, bioinformatics and genomics. Updates are not
expected in this context because changes in genotype data are
rare, inserts are also not frequent – especially when compared
to more typical use cases of databases – since they require
genotyping of genetic material. Therefore, those kinds of
operations were ignored in all workloads. Besides that, these
operations do not influence data analysis, commonly done

1https://www.apache.org/licenses/LICENSE-2.0
2https://github.com/brianfrankcooper/YCSB

in memory, hence all NoSQL systems were evaluated over
read operations. This makes the testing scenarios significantly
different from what was done in previous NoSQL evaluations
for genotype data.

In order to evaluate scalability, performance measures
must be done over various database dimensions in different
executions. It is also important to point out that in previ-
ous studies, tests considered datasets with at most 56,000
SNP markers despite the fact that newer technologies allow
genotyping of millions of markers [8]. This reduces the com-
prehensiveness of the obtained results. To encompass all these
aspects, the amount of SNP markers per individual varied
between 20,000, 56,000 and 770,000 in different workloads.
Population sizes, in contrast, varied between 2000, 5000 and
10,000 individuals. These values were chosen based on popu-
lation and sequence sizes that are commonly found in genetic
improvement of dairy cattle research. To cover all possible
database dimensions, nine workloads were defined.

3.4 Conducting The Experiment
Preliminary executions pointed out that the performance of
executions over 770,000 SNP markers would not be sufficient
for a real case scenario. In order to deal with this problem,
data representation had to be slightly changed: every SNP
was being stored using a single byte even though only two
bits would be sufficient to store three possible values; since
the number of fields was a determining factor in performance,
the representation was adapted to store more than one SNP
marker per field. The final form used eight-byte fields storing
32 markers because most modern architectures support 64-
bit integers, allowing the extraction of a SNP using bitwise
operations. The SNP extraction overhead was considered
negligible because bitwise operations are implemented in
hardware.

The changes in representation resulted in a dimensional-
ity reduction that allowed some of the evaluated systems to
efficiently handle a higher number of SNP markers. To store
20,000 SNP markers for an individual, 625 columns were
needed, for 56,000 and 770,000 markers the required amount
of columns was 1750 and 24063, respectively. Obviously, this
solution requires a mapping of the columns to the SNPs that
it stores. This part of the solution was not explored in this
work because applications that consume genotype data will,
generally, read the entire tuples, i.e., all markers.

Once the workloads were adapted to adequately store 32
SNP markers in each column, they were executed in all four
databases described on Section 3.1. For consistency analysis,
each workload was executed 10 times by MongoDB, Ori-
entDB, HBase and Tarantool. The throughput (in operations
per second) was measured during each execution, and between
these executions, all databases were completely destroyed and
DBMS cleaned to avoid any bias on consequent tests. The exe-
cution time of the reads was limited to 10 minutes, if a NoSQL
system was not able to read the entire database in 10 minutes,
execution would be interrupted. We found this threshold ac-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.97/100 • 2018



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

grafico2k

Page 1

20k 56k 770k
0

200

400

600

800

1000

1200

1400

1600

1800

Tarantool

MongoDB

OrientDB

Hbase

SNP sequence size

O
p
er

at
io

n
s 

p
er

 s
ec

o
n
d

Figure 2. Results on populations of 2,000 individuals

ceptable since reading SNP markers with such performance
would be unfeasible for most known applications. Therefore,
for these cases, throughput values were normally collected but
duly indicated on results section. The same policy was not ap-
plied on data loading phase (necessary to run read operations)
because of the bias it would add to results when readings were
to be made over smaller populations instead of the expected.

4. Results
The computational results exposed in this section were ob-
tained executing all workloads in a dual-core machine, with
16GB of RAM in a Debian 8.8 environment. All databases
engines and YCSB were installed accordingly to developers’
instructions and all executions were automatized.

After the execution of the defined workloads, the results
shown on table 2 were obtained. In more than half of the cases,
the population size growth was accompanied by a throughput
gain. This increase in throughput was relatively smaller in
scenarios where more SNP markers were being stored. Mon-
goDB executions’ throughputs, for example, increased nearly
28% from 5,000 to 10,000 individuals when handling 20,000
markers sequences, but only 1.2% when manipulating 770,000
SNPs genotypes. A possible reason for this behavior is the
network overhead; if it represents a significant fraction of the
total time, an increase in the number of operations would be
beneficial throughput.

Although HBase’s performance was for most of the work-
loads better than OrientDB’s, within the current context and
configuration it was not possible to execute tests on it with
770,000 markers because the load phase was taking too long
and using a lot of space (more than 60GB). OrientDB held
the worst throughputs among all systems except on one case
and was not able to finish all read operations in less than 10
minutes when handling 770,000 SNP markers, these results
are indicated with a “*”.

The behavior of each NoSQL engine when handling 2,000

Table 2. Throughput results
Pop. Size SNP markers

20k 56k 770k

HBase
2k 274.7258 127.2769 -
5k 315.7282 143.1624 -

10k 312.2846 80.2931 -

MongoDB
2k 773.5585 478.6498 70.6957
5k 1076.9967 619.6147 74.3170

10k 1384.0230 732.4774 75.2733

OrientDB
2k 692.3321 40.1699 0.2420*
5k 223.0814 42.6078 0.2430*

10k 234.8291 35.3310 0.2318*

Tarantool
2k 1546.7201 759.2681 85.4458
5k 1846.6466 893.3301 83.7490

10k 2052.3188 925.2444 88.0793

individuals workloads is shown in Figure 2. Tarantool had
the better throughput for every SNP sequence size followed
by MongoDB. The patter is repeated for 5,000 and 10,000
individuals workloads (Figures 3 and 4).

The behavior of each NoSQL engine when handling 2,000
individuals workloads is shown in Figure 2. Tarantool had
the better throughput for every SNP sequence size followed
by MongoDB. The patter is repeated for 5,000 and 10,000
individuals workloads (Figures 3 and 4).

Although Tarantool’s advantage over MongoDB is visi-
ble on low-density sequences, their throughputs get closer
on higher densities. For example, while MongoDB’s perfor-
mance is only 67% of Tarantool’s on workloads with 10,000
individuals and 20,000 SNP markers, this percentage increases
to about 85% on 770,000 markers. This is an evidence that
Tarantool loses performance on a greater ratio than MongoDB.
On workloads with 10,000 individuals, MongoDB preserver
10% of its throughput when comparing 20,000 and 770,000
sequence sizes, whereas on the same conditions Tarantool

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.98/100 • 2018



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

grafico5k

Page 1

20k 56k 770k
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Tarantool

MongoDB

OrientDB

Hbase

SNP sequence size

O
p
er

at
io

n
s 

p
er

 s
ec

o
n
d

Figure 3. Results on populations of 5,000 individuals
grafico10k

Page 1

20k 56k 770k
0

500

1000

1500

2000

2500

Tarantool

MongoDB

OrientDB

Hbase

SNP sequence size

O
p
er

at
io

n
s 

p
er

 s
ec

o
n
d

Figure 4. Results on populations of 10,000 individuals

kept only 4.29% of its performance. For the same comparison,
OrientDB presented the worst ratio, keeping only 0.1% of its
primary throughput. HBase’s scalability was not asserted due
to the lack of data for the more complex workloads.

5. Conclusion
Tarantool presented the best throughputs, even when dealing
with a large number of SNP markers, such as in previous eval-
uations [8]. However, the performance gap between Tarantool
and MongoDB was greatly reduced in this experiment, mainly
because this time testing scenarios were focused on reads,
which makes results more similar to real use-cases. Moreover,
MongoDB’s performance was less affected by the increase in
SNP sequences sizes. Overall, both systems are capable of
handling large genotype databases, but if data evolution is a
concern, results point out MongoDB as a better choice. Also,
it should be noted that Tarantool is restricted by memory size
and consequently may require more expensive hardware.

Concerning scalability on population sizes, the results of
this work contribute to the idea that they are not significant on

performance, at least on sizes related to controlled populations
used on studies such as in the genetic improvement of dairy
cattle. These numbers are usually of that magnitude due to the
costs of finding individuals to run analysis and the genotyping
costs. We cannot draw conclusions over aggregate databases
that might include millions of individuals, but they can be
verified further in future works. With the current results, we
can conclude that the size of SNP sequences has a major
impact on choosing a NoSQL engine to handle genotype data.

Also, we were able to store much larger sequences than
our previous work after deciding to store 32 markers on each
field. This may be a complementary sign that the number
of fields takes a major place on the performance of NoSQL
databases, and finding new techniques to store and retrieve
them taking this into account can lead to better results.

For upcoming works, the engines should be tested on a
distributed environments, since this could reveal new poten-
tials to handle genotype data. Also, testing these systems with
real genotype data like real applications and might reveal new
relevant aspects after analysis.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.99/100 • 2018



Relative Scalability of NoSQL Databases for Genotype Data Manipulation

6. Threats to Validity
There is some possible bias in the results of this paper, and
they must be taken into account while extending and using
this work in further conclusions and research. First of all, the
standard and flexible nature of YCSB does put away a set of
singularities of each engine. That may lead to extra perfor-
mance lost that could be avoided with further understanding
and considerations about each engine details.

Similarly, the results could be significantly different af-
ter investigation and experimentation with different software
configurations such as using OrientDB key-value model or
sharding and load balancing configuration when executing
the DBMS over a cluster. It is also important to emphasize
that our workloads increased the size of the SNP sequences
on a much bigger proportion than in population. Although
this is a common ratio for genotype data, it narrows this work
conclusions to this kind of data.

7. Acknowledgements
The authors thank the reviewers who gave purposive and
helpful comments, as well as express thanks to the National
Research Center of Dairy Cattle (Embrapa Dairy Cattle) of
Brazilian Agricultural Research Corporation (Embrapa); the
Federal University of Juiz de Fora (UFJF); the Coordination
for the improvement of Higher Level Personnel (CAPES);
State of Minas Gerais Research Support Agency (FAPEMIG);
and to the National Council for Scientific and Technological
Development (CNPq).

8. Author contributions
ALA and VJS carried out the experiments, analyzed the results
and contributed to the methodology of this study. TJRB,
PFF and PGSG structured and provided the infrastructure
and computing resources needed to perform the experiments.
PFF revised the text. WA is the project leader, proposed the
methodology and general approach of this study. All authors
read and approved the final manuscript.

References
[1] PARADIS, E. et al. Linking genomics and population
genetics with r. Mol Ecol Resour., Wiley Online Library,
v. 17, n. 1, p. 54–66, 2017.

[2] CATTELL, R. Scalable SQL and NoSQL data stores.
Acm Sigmod Rec, v. 39, n. 4, p. 12–27, 2011.

[3] STONEBRAKER, M. Sql databases v. NoSQL
databases. ACM Comm., v. 53, n. 4, p. 10–11, 2010.

[4] CONSORTIUM, . G. P. et al. A global reference for
human genetic variation. Nature, v. 526, n. 7571, p. 68, 2015.

[5] SHI, W. et al. Informative snps selection based on fuzzy
clustering and genetic algorithm. J Comput Theor Nanosci.,
v. 14, n. 3, p. 1440–1445, 2017.

[6] ZHANG, K. et al. Haplotype block partitioning and tag
SNP selection using genotype data and their applications to
association studies. Genome Res., v. 14, n. 5, p. 908–916,
2004.

[7] CAETANO, A. R. Marcadores SNP: conceitos
básicos, aplicações no manejo e no melhoramento animal e
perspectivas para o futuro. Rev. Bras. Zootecnia, v. 38, n. 8, p.
64–71, 2009.

[8] SCHETTINO, V. J. et al. Avaliação do desempenho
relativo de bancos de dados NoSQL para arquivos de
genótipos. BRESCI 2016, v. 1, n. 1, p. 306–309, 2016.

[9] EDLICH, S. NoSQL. 2016. Disponı́vel em:
〈http://www.nosql-database.org〉.
[10] IT., S. DB-Engines Ranking. 2017. Disponı́vel em:
〈https://db-engines.com/en/ranking〉.
[11] SEMPÉRÉ, G. et al. Gigwa—genotype investigator for
genome-wide analyses. GigaScience, v. 5, n. 1, p. 1–9, 2016.

[12] CHLEBIEJ, M. et al. Architectural challenges of
genotype-phenotype data management. In: BARBOSA, S.
et al. (Ed.). International Conference: Beyond Databases,
Architectures and Structures. Ustroń, Poland: Springer, 2015.
(Communications in Computer and Information Science).

[13] FOUNDATION, A. S. Apache HBase. 2017. Disponı́vel
em: 〈https://hbase.apache.org〉.
[14] MONGODB, Inc. MongoDB for GIANT Ideas. 2017.
Disponı́vel em: 〈https://www.mongodb.org〉.
[15] ORIENTDB Ltd. OrientDB - Distributed Multi-
Model and Graph Database. 2017. Disponı́vel em:
〈http://orientdb.com/orientdb〉.
[16] GROUP, M. Tarantool - Get your data in RAM. Get
compute close to data. Enjoy the performance. 2017.
Disponı́vel em: 〈https://tarantool.org〉.
[17] COOPER, B. F. et al. Benchmarking cloud serving
systems with ycsb. In: HELLERSTEIN, J. M. (Ed.).
Proceedings of the 1st ACM Symposium on Cloud Computing.
New York, NY, USA: ACM, 2010. (SoCC ’10, v. 1), p.
143–154.

[18] ABUBAKAR, Y.; ADEYI, T. S.; AUTA, I. G.
Performance evaluation of NoSQL systems using YCSB in a
resource austere environment. Perf. Evaluation, v. 7, n. 8, p.
23–27, 2014.

[19] MOREIRA, L. O.; SOUSA, F. R.; MACHADO, J. C.
Analisando o desempenho de banco de dados multi-inquilino
em nuvem. In: OLIVEIRA, J. P. M. de (Ed.). São paulo,
SP: Brazilian Computer Society Special Interest Group on
Databases, 2012.

[20] FRIEDRICH, S. et al. Nosql OLTP benchmarking:
A survey. In: LEY, M. (Ed.). GI-Jahrestagung. Stuttgart,
Germany: DBLP, 2014. (Data Management in the Cloud,
v. 44).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 2 • p.100/100 • 2018

http://www.nosql-database.org
https://db-engines.com/en/ranking
https://hbase.apache.org
https://www.mongodb.org
http://orientdb.com/orientdb
https://tarantool.org

	Introduction
	Introduction
	Related Work
	Materials and Methods
	Database selection
	Schema modeling
	Workload definition
	Conducting The Experiment

	Results
	Conclusion
	Threats to Validity
	Acknowledgements
	Author contributions
	References

