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Aedes aegypti Egg Counting with Neural Networks for
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Contagem de Ovos de Aedes aegypti com Redes Neurais para Detecção de Objetos.
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Abstract: Aedes aegypti is still one of the main concerns when it comes to disease vectors. Among the many
ways to deal with it, there are important protocols that make use of egg numbers in ovitraps to calculate indices,
such as LIRAa and Breteau Index, which can provide information on predictable outbursts and epidemics. Also,
there are many research lines that require egg numbers, specially when mass production of mosquitoes is
needed. Egg counting is a laborious and error-prone task that can be automated via computer vision-based
techniques, specially deep learning-based counting with object detection. In this work, we propose a new
dataset comprising field and laboratory eggs, along with test results of three neural networks applied to the task:
Faster R-CNN, Side-Aware Boundary Localization and FoveaBox. With FoveaBox, we achieve a median mean
absolute error of 6.854. Finally, we also discuss the main difficulties and possibilities for future research.
Keywords: Deep Learning — Ovitrap — Disease Vector Control — Counting

Resumo: Aedes aegypti ainda é uma das principais preocupações no que diz respeito a vetores de doenças.
Dentre as várias formas de lidar com essa espécie, há importantes protocolos que fazem uso dos números de
ovos em ovitrampas para calcular ı́ndices, tais como o LIRAa e Índice de Breteau, que fornecem informações
acerca de surtos e epidemias passı́veis de previsão. Além disso, há várias linhas de pesquisa que requerem
os números de ovos, especialmente quando é necessária a produção em massa de mosquitos. A contagem
de ovos é uma tarefa laboriosa e sujeita a erros, e pode ser automatizada por meio de técnicas baseadas em
visão computacional, especialmente por meio de contagem por detecção de objetos baseada em aprendizado
profundo. Neste trabalho, apresentamos um novo conjunto de dados, abarcando tanto ovos coletados em campo
quanto ovos postos em laboratório, juntamente com o teste de três redes neurais aplicadas à tarefa: Faster
R-CNN, Side-Aware Boundary Localization e FoveaBox. Com a FoveaBox, foi alcançado um erro absoluto
mediano de 6,854. Por fim, também discutimos as principais dificuldades e possibilidades para pesquisas
futuras.
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1. Introduction
The Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera:
Culicidae) is an insect associated with the infestation and
transmission of several diseases, including dengue, chikun-
gunya fever and the Zika virus. In Brazil, disease outbursts
and epidemics related to the A. aegypti result in high expenses
to the national health system. The problems caused by them
can be considered nationwide and chronic [1].

Among the several control strategies implemented and
used in protocols by the Vector Control Center of Campo
Grande, state of Mato Grosso do Sul, Brazil, that follows the
works of Garcia et al. [2], the methods believed to have the
highest efficacy are ones that use indices such as the Larval
Index Rapid Assay for Aedes aegypti (LIRAa) and the Breteau
Index, which require counting the number of eggs, usually
in ovitraps. This is in agreement with studies such as that by
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Sanchez-Gendriz et al. [3].
When egg numbers are used, the counting is usually done

manually with the assistance of a magnifier or a microscope.
Bakran-Lebl et al. [4], for example, counted 63.287 mosquito
eggs in a research on invasive Aedes species in Austria, and
Brisco et al. [5] counted Aedes eggs within a research to assess
the results of a vector control policy in Hawaii, albeit in a
much smaller scale.

The idea of automating the laborious task of counting eggs
of A. aegypti is by no means a new one. As discussed by Brun
et al. [6], researches on the application of classic computer
vision and machine learning techniques to the task appeared
as early as 2008. On the other hand, according to the review,
the use of deep learning techniques is more recent, going back
to 2019. Most of the works focus on eggs that are laid by
female mosquitoes in areas where outbreaks are likely.

A work that used deep learning was that by de Santana
et al. [7], who provided a realistic dataset and tested the per-
formance of some algorithms to count eggs of A. aegypti.
Another work was that by Garcia et al. [2], who used im-
ages of ovitraps as a way to measure egg deposition. The
researchers used a strategy of segmenting and classifying, and
report that over 90% of the eggs were found. Furthermore,
they indicated three images in which the counting was much
worse. In these, they argue that the main difficulties are the
presence of dirtiness and the high density of eggs. The images
presented to support the claim do show high countings of
eggs. However, they do not seem to be tightly clustered, as
the ones presented by us. Furthermore, although they counted
90% of the eggs (with an IoU threshold of 0.3, leading to low
precision results), their methodology is lacking in robustness,
since the experiment was conducted without repetitions and
the test set comprised only 30 images.

Currently, efforts to increase the performance of systems
to recognize eggs are still ongoing. For instance, Gumiran
et al. [8] investigated the visual features of eggs, arguing
that the most important ones are: shape, size and color. In the
current stage, some researches aim at designing more practical
systems. For instance, Abad-Salinas et al. [9] presented a
prototype of an intelligent ovitrap that uses a Raspberry Pi
for counting eggs. Javed et al. [10] proposed a software for
counting Aedes eggs. The authors separated two groups of
images, one of which they considered micro images, with
up to 215 eggs. The other group was that of macro images,
with up to 3658 eggs per image. The authors report an overall
accuracy of 98.8% for micro images, and 96.06% for macro
images. However, from the presented images one can observe
that the eggs were not as tightly clustered as they are in our
case. Also, since the test set contains only 10 images and no
repetitions were done, the methodology is not robust, and the
results, albeit very high, were not properly validated.

Given the state-of-the-art, it is noticeable that automat-
ically counting eggs laid in laboratory conditions is a task
that has not yet been properly addressed. The importance
of counting eggs obtained in field notwithstanding, there are

research lines that require counting eggs laid in laboratory,
mainly for testing diverse techniques. For instance, Iyyappan
et al. [11] used egg numbers to evaluate the effectiveness of
different organic infusions used to attract female mosquitoes.
Khan et al. [12] carried out a study in which the egg number
was used to compare the attractiveness of different colors and
materials on mosquitoes. In this last case, the experiments
were separately executed in laboratory conditions and in field.

It is well acknowledged in the literature that the task of
counting eggs laid in the field, when carried out as described
above, is a laborious, physically demanding, slow and error-
prone one. For field conditions, it is clear by now that compu-
tational techniques are a viable solution for egg counting [6],
and there are no a priori reasons to assume that they do not
work for laboratory conditions. There are reasons, however,
to assume that the tasks are not trivially interchangeable, since
the difference between conditions leads to differences in the
visual aspect of the context that surrounds the eggs, and also of
the eggs themselves. That being said, in this work, we present
a new image dataset for A. aegypti egg counting, which is
non-trivially different from those already available in that
it comprises both situations: eggs collected in the field and
eggs mass-produced in a laboratory. Fig. 1 shows samples
of images of both situations. The difference in quantity can
be easily seen, clusters of eggs are a common situation in
laboratory conditions, given the necessity of mass production
for different kinds of tests.

Among the machine learning techniques, those that in-
volve image processing, belonging to the field of computer
vision, can be considered the most adequate ones, given the
nature of the task, which is doable through object detection
techniques. The state-of-the-art in object detection techniques
is achieved through deep learning techniques. Therefore, we
also present the results achieved by three neural networks
applied to the task: Faster R-CNN, SABL and FoveaBox.
These, then, are the main contributions of the paper: (i) a new
image dataset with over 12 thousand annotated eggs, origi-
nated from both field and laboratory environments; (ii) the
experimental evaluation of three consolidated object detection
neural networks applied to the task; and (iii) the discussion of
difficulties and future research possibilities.

2. Materials and Methods
2.1 The image dataset
Initially, the eggs of A. aegypti were collected in field, in
Campo Grande, MS, Brazil, by agents of the Center of Epi-
demiologic Control of Vectors of the Municipal Health Secre-
tariat (CCEV/SESAU). Following the work of Ricci et al. [13],
the eggs were left to mature for seven days, protected from
light and humidity. For maturation, a BOD incubator was
used, with a temperature of 27± 2 °C, RH of 75± 5% and
photophase of 12 hours. Then, they were separated between
viable and non-viable.

From the eggs collected in field, the eggs of the first gen-
eration (F1) were obtained in laboratory. The eggs of F1 were
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Figure 1. Image examples. The images in the first row show
eggs collected in the field. The ones in the second row are
laboratory eggs.

Figure 2. Two sample images annotated with Roboflow.

also collected with ovitraps, and were matured following the
same protocol utilized for the field eggs, the only difference
being that filter paper was used in the ovitraps, to keep the
adequate humidity levels and to facilitate hatching.

The pictures of each set of eggs were taken before the
eggs were left to mature. The images were made with a Leica
MC170 HD stereomicroscope in the Laboratory of Entomol-
ogy (B09) of the Dom Bosco Catholic University. Fig. 1
shows examples of the images thereby obtained. The images
were then annotated for object detection with Roboflow1. Sam-
ples of annotated images can be seen in Fig. 2. The annotated
images were exported in COCO-JSON format. The image
dataset contains 247 images. Of these, 123 are of field eggs
and 124 are of F1. In total, there are 12.513 annotated A.
aegypti eggs.

1Available here: ⟨https://roboflow.com/⟩

2.2 Neural networks
In the field of computer vision, counting tasks have been
approached through object detection techniques that make use
of convolutional neural networks (CNN). In this work, we
test the performance of three architectures commonly utilized
for object detection: Faster R-CNN, Side-Aware Boundary
Localization (SABL) and FoveaBox2.

The Faster R-CNN, proposed by Ren et al. [14], can be
considered the third version of the Region-Based Convolu-
tional Neural Network (R-CNN) [15]. It was proposed af-
ter the Fast R-CNN, which is the second version of the R-
CNN [16]. As the name indicates, the main objective of the
different versions was to improve computation speed. To do
that, the Faster R-CNN introduced the usage of a neural net-
work for region proposal, making convolutional layers share-
able between the region proposal network (RPN) and the Fast
R-CNN module. In this work, it is used with a ResNet50-FPN
backbone.

The Side-Aware Boundary Localization (SABL) was pro-
posed by Wang et al. [17]. In itself, SABL is a new way of
refining the bounding box localization, having been presented
as an alternative to the usual bounding box regression. The
authors use the notion of buckets, divisions on each side of
the map of the region of interest, predicting first the bucket to
which a boundary of the box belongs, and then refining the
prediction with respect to the bucket. In this work, we use
RetinaNet with SABL and ResNet50-FPN as backbone.

Finally, the third object detection network tested in this
work is FoveaBox. FoveaBox was proposed by Kong et
al. [18] and belongs to the category of detection networks
that do not use anchors. It was inspired by the fovea of the
human eyes, the basic idea being to predict the center of an
object in the image, if it exists, along with two points defining
the bounding box. In this work, the tested version uses a
ResNet50-FPN as backbone.

The first architecture, Faster R-CNN, was chosen as a clas-
sic and accomplished detection network. It is used to compare
the performance of SABL and FoveaBox, which are more
recent3 and proposed new techniques for object localization,
which may have an impact on the network performance when
applied to the task of egg counting.

2.3 Experimental Setup
To evaluate the neural networks listed in Section 2.2, we used
the implementations available in the MMDetection package.
The hyperparameters were left as is, including the image
size, set to (1333, 800). During test, the maximum number
of possible detections was set to 1000, which 10 times the
default value in the implementation, in order to make the test
fit to images with a large number of annotated eggs, which go
beyond 500 in some images of the dataset. Limits for training,

2Implemented in MMDetection as faster rcnn r50 fpn 1x coco,
sabl retinanet r50 fpn 1x coco, and, finally, fovea r50 fpn 4x4 1x coco,
respectively

3Both were originally proposed in 2020, while the Faster R-CNN was
already being used in 2015.
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which are higher by default, were not changed. Furthermore,
we used the available pre-trained weights, fitted on the COCO
dataset.

All the neural networks were optimized with Stochastic
Gradient Descent (SGD). For the Faster R-CNN, a learning
rate of 0.02 was used. For both SABL and FoveaBox, a learn-
ing rate of 0.01 was used. These are default values, according
to the original papers of the architectures. However, differ-
ently from the original works, we did not use learning rate
scheduling. The other hyperparameters of the SGD optimizer
were also kept as the default values: momentum as 0.9 and
weight decay as 0.0001 for all architectures. These choices
were also taken because searching for optimal hyperparame-
ters goes beyond the scope of this work.

The architectures were tested through a 10-fold cross vali-
dation strategy. All images from both scenarios were brought
together in one dataset, and randomly picked for the folds.
The training was performed in 30 epochs. In each epoch, 20%
of the training images were used for validation. To evaluate
the architectures, the following metrics were calculated on
the test sets after each run: mAP50, mAP75, mAP, MAE,
RMSE, precision, recall and f-score, as well as Pearson’s co-
efficient of correlation (r). One should notice that, ideally,
error measurements (i.e., MAE and RMSE) should be closer
to zero, whereas the other metrics should be closer to one.
Also, although Pearson’s r is not a measurement of error per
se, it was included in this study due to its straightforwardness:
if the neural network counts eggs adequately, any variation in
the number of eggs in an image must imply a variation in the
number of counted eggs in the exact same proportion. Ideally,
the correlation between groundtruths and predictions should
assume the greatest possible value (and the error equal zero).

After testing, boxplots were also generated. An ANOVA
hypothesis testing was used to evaluate the architectures, with
a chosen threshold of 5%. As the task at hand is object count-
ing, MAE, RMSE and Pearson’s r were taken as dependent
variables for the ANOVA, which was independently applied
for each of the metrics, with the architectures taken as a factor.
Tukey’s Honestly Significant Difference (TukeyHSD) was
used as a post hoc test when ANOVA results were significant.
Other metrics were further evaluated when the discussion thus
required. After the cross validation, the counting was also
evaluated as one group, apart from the division in folds. The
MAE, RMSE and Pearson’r were calculated for them, and
scatter plots of groundtruth and predictions were generated,
along with the best fit line.

An in-depth analysis was then conducted on the results
of the most promising architecture (understood as that which
achieved the smallest average RMSE). The objective of this
analysis was to identify and summarize the difficulties in-
volved in the task. For this in depth-analysis, we separated
the results according to the number of eggs in the image: first,
into groups of images with up to 100 eggs, images with over
100 eggs up to 300 eggs, and images with over 300 eggs; then,
we separated the images with up to 100 eggs into a group with

Table 1. Statistics for MAE, RMSE and Pearson’s coefficient
of correlation calculated in a 10-fold cross validation strategy.
For Pearson’s r, which yielded a significant ANOVA result,
the TukeyHSD groups are shown in compact letter display
format (marginal significance considered).

MAE
Architecture Median IQR Mean SD

Faster R-CNN 8.958 12.667 12.171 7.741
SABL 11.146 13.419 14.201 8.632

FoveaBox 6.854 8.116 9.213 5.347
RMSE

Architecture Median IQR Mean SD
Faster R-CNN 28.678 32.200 34.684 23.307

SABL 36.301 30.052 40.195 24.022
FoveaBox 19.725 20.524 23.628 14.587

Pearson’s r
Architecture Median IQR Mean SD

Faster R-CNN 0.971 0.030 0.963 ab 0.034
SABL 0.968 0.029 0.958 b 0.034

FoveaBox 0.987 0.009 0.989 a 0.006

up to 50 eggs and another one with more than 50 eggs (up to
100). This procedure was taken in order to better evaluate how
the increase in the number of eggs influences the performance
of the networks.

3. Results and Discussion

Figure 3. Boxplots for each metric calculated in the
experiment.

Fig. 3 shows boxplots for each metric calculated in the
experiment across ten runs. Table 1 shows statistics for the
main metrics used to evaluate the networks in the task at
hand: MAE, RMSE and Pearson’s r. The ANOVA hypothesis
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Figure 4. Scatter plots for each architecture, along with the
best fit line. The metrics below the title were calculated
differently from those in Table 1. Here, they refer to the
counting as a whole, not to the results in ten folds.

(a) Faster R-CNN (b) SABL (c) FoveaBox
Figure 5. Annotations (blue), true positives (green) and false
positives (red) for each architecture on the image with the
highest number of annotations.

test did not indicate difference between the architecture’s
performances in the case of MAE (p= 0.329) and RMSE (p=
0.22). For the coefficient of correlation, the ANOVA yielded
a marginally significant result (p = 0.046), but the TukeyHSD
result was actually marginally insignificant when SABL and
FoveaBox were compared (p = 0.053). Furthermore, it was
not significant at all when Faster R-CNN was compared both
with FoveaBox (p = 0.12) and with SABL (p = 0.92).

Fig. 4 shows scatter plots of groundtruth vs. prediction for
each image in the dataset, for each architecture. The metrics
below the title refer to all the images, not to the results per
fold (as is the case in Table 1). The plots also show the best
fit line. It can be seen that the correlation was, on average,
very high. The scatter plots show that the errors tended to be
higher in images with more annotations. All in all, FoveaBox
achieved a better performance.

The boxplots for Pearson’s r in Fig. 3 show that SABL
and Faster R-CNN had one outlier. Further inspection of the
results show that in both cases the outlier r was calculated in
fold 6, in which the image with the highest number of eggs
(543) was in the test set. In the case of this image, which was
taken in laboratory, Faster R-CNN counted 179 eggs (Fig. 5a),
SABL counted 176 eggs (Fig. 5b), and FoveaBox, which did
not present an outlier in Fig. 3, managed to count 335 eggs
out of 543 annotations (Fig. 5c). This number may actually
be bigger, since inspection of the image shows that some eggs
that were considered false positives were, in reality, missed in
the labeling process.

The capacity of FoveaBox of counting more eggs is also
shown by its recall results, although the statistical tests were
marginally not significant (p = 0.085 for ANOVA, with p =
0.070 for TukeyHSD when it was compared with SABL and
p = 0.427 when it was compared with Faster R-CNN), that is,

there is no indication that the recall of FoveaBox was better
than that of Faster R-CNN, but it arguably was better than that
of SABL, marginal significance considered. This can also be
seen in the recall boxplots, in Fig. 3. The median of FoveaBox
was near the upper quartile of Faster R-CNN, and the IQR
was smaller.

The results of FoveaBox were selected for an in-depth
analysis, since it was found to be the most promising architec-
ture, given the scope of this work. Future research can focus
on improving hyperparameter tuning, which was not within
the scope of this work, or on evaluating different architec-
tures, such as one of the many versions of YOLO [19], or a
transformer-based architecture, such as DETR [20]. Alterna-
tively, future research can also evaluate different approaches,
such as crowd counting [21, 22, 23]. In this last case, the
problem may require a different conceptualization.

Figs. 6 and 7 show scatterplots of groundtruths and pre-
dictions, along with the corresponding best fit lines for the
groups described in Section 2.3. One can see from Fig. 6 that
the error is much higher for images with more eggs (almost
fourfold for images with more than 300 eggs). When the
results for images with less eggs are analysed (in Fig. 7), one
can see that it is indeed the images with more than 50 eggs
that lead to the worse errors. In this second case, Pearson’s
r also showed only a weak positive correlation. Nonetheless,
an RMSE of over 30 for images with less than 50 eggs can
still be considered troublesome (even if an MAE of 1.34 is
considered), if the counting is to be used for disease outbreak
predictions and scientific research. The situation is even worse
for images with more eggs, given the high MAE and RMSE
values for images with more eggs.

Concerning images depicting a higher density of eggs, an-
other dimension of the issue revolves around eggs positioned
at the periphery of the pallet. This is relevant for two rea-
sons: firstly, it poses a challenge for the annotation process,
and secondly, it creates a complication for the performance
of neural networks. An example is shown in Fig. 8, where
the difficulty posed by clusters is also evident. The primary
complexities arise from variations in perspective, leading to
shifts in the visual attributes of the eggs. Moreover, these
eggs frequently suffer from being out of focus and partially
obscured by their counterparts. Addressing this concern in
subsequent research could require ignoring these eggs, which
would necessitate image cropping. However, such a strategy is
not straightforward, as it’s uncertain whether these eggs won’t
be inadvertently detected, causing potential interference. Yet,
the more challenging scenario encompasses eggs positioned
at the juncture of the frontal and lateral surfaces, as depicted
in Fig. 9. Attempting to capture an image of the edge itself in-
troduces another complexity, potentially including eggs from
adjacent sides, akin to the instance portrayed in Fig. 9.

4. Conclusion
A. aegypti is projected to persist as a significant disease vec-
tor in the upcoming years. Although there are strategies to
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Figure 6. Regression plot for groundtruths and predictions,
separated into three groups: the first with images containing
up to 100 eggs, the second one with images containing more
than 100 eggs up to 300, and the last one with images
containing more than 300 eggs. One should notice that the
error is much higher for images with more eggs.

Figure 7. Regression plot for groundtruths and predictions
for images containing up to 100 eggs. These were separated
into two groups: one for images with up to 50 eggs, and
another one for images with more than 50 eggs. As with the
last plot, the error is higher for images with more eggs. In
this case, Pearson’s r was also lower.

reduce its potential of damage, many of them hinge on indices
grounded in egg quantities. Also, many researches require the
quantification of high numbers of eggs, which is a difficult
task. Within this study, we introduced a novel image dataset
that tries to address these different scenarios. We also eval-
uated the efficacy of three neural networks in tackling this
task. The results underscore that FoveaBox stands out as the
prime contender when it comes to counting extensive arrays
of closely clustered eggs, surpassing both Faster R-CNN and
SABL in this regard.

Furthermore, we discussed the major difficulties involved
in this quantification, and some possibilities for future re-

Figure 8. A pallet with eggs on the side of the pallet. One
should notice that these are not only very difficult to annotate,
but also that the neural network did a poor job in identifying
them.

Figure 9. Eggs edged between two sides (in the center of the
image). In this case, they were considered as belonging to the
side that appears in the bottom of the image. One should also
notice that, in this case, some eggs in the top half of the
image were counted, but with subpar performance.

search. Beyond those already presented, it will also be im-
portant to expand the dataset, and to enhance the analysis of
the results by looking at different types of errors, and at the
capacity of the networks for generalization. In these future
analyses, if the rigor in the utilization of metrics and statistical
methods is maintained, notable comparative factors may be
found out, and a improvement on the A. aegypti control may
be expected.
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Figure 10. Dirt on the pallets counted as eggs.
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