

CONCEPÇÃO E DESENVOLVIMENTO DE MATERIAL EDUCATIVO DIGITAL

Gilse Antoninha Morgental Falkembach*

Resumo

Este artigo aborda as etapas para o desenvolvimento de materiais educativos digitais, a construção de modelos através de *storyboard* e a implementação através de sistemas de autoria.

Palayras Chaves:

Informática na Educação – material educativo digital - *Software* educacional – *courseware* – aplicações educativas

CONCEPTION AND DEVELOPMENT OF DIGITAL EDUCATIONAL MATERIAL

Abstract

This article approaches the stages for the development of digital educational materials, the construction of models through storyboard and the implement through author's system.

Keywords:

Informatics in Education - digital educational material – educational software – courseware – educational applications

Introdução

Sabe-se da importância do computador na Educação como agente transformador e a importância do software educacional como co-responsável dessa transformação auxiliando no processo de ensino e aprendizagem. E como consequência vale ressaltar a importância da concepção e desenvolvimento de softwares educacionais como instrumentos potencializadores da aprendizagem em que a reciclagem de informações transforma os velhos paradigmas da Educação, possibilitando práticas pedagógicas inovadoras.

Este artigo aborda o processo de concepção e desenvolvimento de materiais educativos digitais que auxiliem a colocar em prática uma abordagem construcionista da aprendizagem, em que o aprendiz é o centro do processo de aprendizagem, em que a autonomia da aprendizagem seja estimulada e que vise a desenvolver habilidades cognitivas associadas às diversas áreas do conhecimento.

Os recursos oferecidos pelas tecnologias digitais possibilitam criar materiais educativos que podem estimular o aprendiz tornando-o um cúmplice do processo de aprendizagem e engajando-o no processo do seu desenvolvimento. As novas tecnologias, como a Internet, forçam a adaptação ao meio e ao ambiente social e o professor se torna um elo de conhecimento dessas tecnologias, podendo transformar o processo de aprendizagem.

Os materiais educativos digitais são recursos que podem ser desde pequenas atividades realizadas via computador ou ainda livros eletrônicos, jogos, simulações, V. 3 Nº 1, Maio, 2005

histórias em quadrinhos ou desafios propostos aos alunos. Os materiais digitais normalmente, além da multimídia, usam o recurso do hipertexto que permite uma navegação aleatória, não linear e cabe ao professor fazer um planejamento prévio, saber selecionar as unidades a serem trabalhadas, de forma contextualizada e utilizá-las em sua prática pedagógica, observando e intervindo nas interações entre os alunos e deles com o material no desenrolar do trabalho, oportunizando a descoberta e a exploração. Para que um *software* educativo cumpra sua finalidade é preciso que o professor saiba selecionar e planejar os materiais utilizados em sala de aula e melhor ainda se ele for capaz de desenvolver seu próprio material. Os Sistemas de Autoria oferecem os recursos que permitem ao professor sem grandes conhecimentos de programação planejar e desenvolver seu material educativo digital.

Segundo Eduardo O. Chaves, professor de Tecnologia na Educação, Faculdade de Educação da Universidade Estadual de Campinas:

A produção de *software* educacional de alta qualidade técnica e com sofisticação pedagógica é um desafio enfrentado pelo Brasil. A produção deste *software* esbarra na dificuldade de diálogo entre analistas de sistemas e profissionais da área de Psicologia e Educação. Estes profissionais não trocam informações uns com os outros. Concluindo, o que se tem de *software* educacional é pouco e é material ingênuo do ponto de vista de pedagógico.

A Informática na Educação oferece os subsídios para mudar esse quadro. É preciso o esforço conjunto de profissionais das áreas de Educação, Psicologia e Informática para a concepção e desenvolvimento de *softwares* educacionais com qualidade.

Vale lembrar que as expressões: software educacional; *courseware*; aplicativos educacionais; material educativo; material educacional; ferramentas instrucionais; material didático na forma eletrônica e material didático digital são sinônimos. A expressão objetos educacionais também significa material educativo digital, mas, com a característica da reutilização, ou seja, seu uso pode ser compartilhado o que exige que ele tenha uma estrutura modular associada com o desenvolvimento direcionado para a *web*. Os objetos educacionais trazem novas possibilidades no desenvolvimento de material didático a ser usado também na Educação a Distância.

Aplicação Hipermídia Educacional

Toda aplicação hipermídia se caracteriza por utilizar os recursos da multimídia e do hipertexto. É, normalmente, um trabalho de equipe e inclui o projeto, a metodologia do desenvolvimento, a implementação, a avaliação e a distribuição. Uma aplicação hipermídia educacional, ou seja, um *courseware*, interativo usa múltiplas mídias que envolvem múltiplos sentidos dando suporte à aprendizagem significativa, contextualizada, que ocorre quando os alunos estão produzindo significados sobre o conteúdo abordado. Para cumprir a finalidade de ensejar a aprendizagem é preciso que seja bem planejado e obedeça às etapas para o desenvolvimento de uma aplicação hipermídia. Essa forma de apresentação do conteúdo, associada ao *layout* da interface, estabelece a estrutura da aplicação e reflete a forma de consulta ao conteúdo do material instrucional.

Ao se projetar uma aplicação educacional, de qualquer tipo, é conveniente considerar que o processo de desenvolvimento deve incluir tanto o funcionamento da aplicação quanto os mecanismos pedagógicos e didáticos que constituem a base de toda a aplicação de ensino e aprendizagem. Para tanto vale começar respondendo às seguintes perguntas:

- quais os conceitos relevantes do conteúdo, tendo como referência a realidade do aluno?
 - que noções facilitam o entendimento dos temas a serem trabalhados?
 - que noções aprofundam o entendimento destes temas?

Uma aplicação hipermídia educacional, ou seja, um *courseware* pode ser formado por uma lição, pelo conteúdo de uma aula, um curso, um programa de treinamento, uma unidade curricular ou uma atividade didática qualquer. É sempre formada por um conteúdo a ser aprendido. Portanto, deve levar em conta todos os procedimentos pedagógicos que vão desde a consideração do conteúdo a ser apresentado e das estratégias mais adequadas para fazê-lo, até a compreensão do processo de ensino e aprendizagem e das interações entre o aluno envolvido nesse processo e o conteúdo, através de um meio informatizado. Uma aplicação hipermídia educacional pode ser formada:

- só com atividades de reforço e/ou avaliação sobre determinado conteúdo;
- com o conteúdo teórico mais atividades de reforço e/ou avaliação;
- as atividades poderão ou não fornecer *feedback* aos alunos;
- poderá ou não ter avaliação com escore.

As atividades podem ser:

• bem variadas, de diversos tipos (questões de múltiplas escolhas, de V ou F, de

completar, de marcar ou ainda tipo lazer como jogos ou histórias);

- de um só tipo, porém, com diferentes graus de dificuldades;
- de diversos tipos com níveis diferentes de dificuldade para cada tipo.

Projeto e desenvolvimento de material educativo digital

Na verdade a Informática na Educação subsidia o uso do computador como auxiliar no processo de ensino e aprendizagem e possibilita um modelo educacional centrado no aluno. As tecnologias digitais, através dos *coursewares*, auxiliam o processo de ensinar e aprender, pois, oferecem ao professor, alternativas para melhor expor um conteúdo, através dos recursos de multimídia. A multimídia na Educação permite refletir sobre novas propostas pedagógicas mediadas pela tecnologia digital e criar materiais de apoio didático para a Educação Infantil, Ensino Fundamental, Ensino Médio, Ensino Superior além de apresentar recursos inovadores para a Educação a Distância. É o computador como um recurso didático que disponibiliza informações, permitindo interações e comunicações síncronas e assíncronas, dinamizando as práticas

pedagógicas, permitindo as mais variadas estratégias de ensino e permitindo ao aluno trabalhar segundo seu ritmo e suas preferências, facilitando a construção do conhecimento. Os *coursewares* dão suporte a este novo paradigma educacional.

Os *coursewares* devem ser projetados a partir de uma metodologia que garanta o ensino e auxilie na aprendizagem possibilitando o acesso à grande quantidade de informações organizadas de maneira a atender diferentes solicitações dos alunos. O desenvolvimento de uma aplicação hipermídia educacional, de alta qualidade técnica e com fins comerciais, envolve o esforço de profissionais das mais diversas áreas trabalhando em conjunto. A formação da equipe depende do tipo de aplicação a ser desenvolvida e da definição do tema. Algumas características devem ser observadas por quem projeta, seleciona ou avalia um *courseware*. Se o professor for o responsável pela concepção e a criação de um material educativo digital também precisa observar as etapas para o desenvolvimento de um projeto dessa natureza.

Metodologia para o desenvolvimento do projeto

Metodologia é um conjunto de normas, procedimentos, técnicas e ferramentas de análise que definem o padrão desejado para o desenvolvimento de projetos de sistemas ou aplicações educacionais. Segundo Silveira, 99, para o bom andamento de um projeto, é de suma importância a implantação de uma metodologia consistente. Para ser consistente a metodologia deve atender aos requisitos de padronização, flexibilidade, documentação, modularização e planejamento. A ausência de uma metodologia no desenvolvimento de sistemas pode levar ao caos. É necessário que os profissionais envolvidos no projeto trabalhem em cooperação para que haja uma padronização dos procedimentos. A metodologia tradicional se caracteriza por dividir o trabalho de criação de uma aplicação em etapas, cada uma delas contendo um conjunto de atividades e procedimentos que levem à resolução do problema.

O desenvolvimento de um *courseware* de qualquer tipo envolve as fases mostradas abaixo. Mesmo que o *courseware* seja projetado por um professor, em um trabalho mais doméstico é preciso observar essas etapas para que o desenvolvimento seja profícuo.



Figura 1: Etapas do desenvolvimento de um projeto

1°) Análise e planejamento - nessa fase é preciso considerar o produto a ser desenvolvido. É preciso definir o tema, considerar as aplicações similares e os recursos disponíveis. São feitas a coleta dos dados e a análise destes dados. É preciso definir

4 _______V. 3 No 1, Maio, 2005

ainda o objetivo da aplicação, o público alvo, como esse produto será usado, quando, onde e para que? e o que é esperado com o uso da aplicação ?

Na metodologia deve prevalecer o bom senso em todas as situações, e segundo Silveira, 99 não se deve acreditar em soluções mágicas, é preciso evitar raciocínio simplista e soluções milagrosas. Para auxiliar no processo de planejamento vale responder as perguntas abaixo:

- Qual o objetivo do courseware?
- Qual o conteúdo? refere-se às informações da aplicação a serem apresentadas no *courseware* e fornecidas por um especialista.
- Qual o público alvo? refere-se a quem vai usar o *courseware* instrucional.
- Como o conteúdo será apresentado? refere-se às estratégias de como o conteúdo será mostrado, que mídias serão usadas?
 - Qual o orçamento disponível?
- Quais os recursos necessários para o desenvolvimento do *courseware* ? diz respeito ao que será necessário em termos de *hardware* e *software* para criar a aplicação e o tempo disponível para isso.
- Quando o *courseware* será usado? em que situações de aprendizagem seu uso se justifica.
- Onde será usado? no laboratório da Escola com a presença do professor ou em casa?
- Quais os resultados esperados? que se espera que um aprendiz obtenha ao trabalhar com o *courseware*?
- Como o usuário-aprendiz vai acessar as informações? refere-se ao *design* da interface

Todo o *courseware* deve apresentar a informação de forma didática, obedecendo aos princípios pedagógicos, ou seja, deve prever um roteiro adequado ao aprendiz embutido na sequência dos conteúdos, observando os pré-requisitos e calcular o tempo gasto por um aluno médio em cada unidade.

2°) Modelagem - Segundo Johnson-Laird, 97 "Modelagem é uma técnica que permite a construção de modelos, com o objetivo de facilitar a compreensão, a discussão e a aprovação de um sistema antes da sua construção real"

A fase de modelagem de uma aplicação hipermídia inclui a criação de 3 modelos: conceitual, de navegação e de interface.

a) Modelo Conceitual – se refere ao domínio, ou seja, ao conteúdo da aplicação e de como esse conteúdo será disponibilizado ao aluno, é um plano de ação ou um roteiro que mostra como será a hiperbase da aplicação. Toda aplicação hipermídia é formada por uma hiperbase, um conjunto de estruturas de acesso e uma interface. O modelo conceitual detalha como o conteúdo será dividido em nós ou

unidades, como os nós serão exibidos, quais as mídias a serem utilizadas e como o usuário vai interagir com a aplicação. É a organização das informações e das mídias.

- b) Modelo de Navegação define as estruturas de acesso, ou seja, como serão os elos. A navegação deve ser intuitiva para evitar a desorientação do usuário e diminuir a sobrecarga cognitiva. O modelo define o uso de menus, índices, roteiros guiados, etc... A navegação é de suma importância em um *courseware* instrucional, pois, se o aprendiz tiver total liberdade de escolha é possível que se interesse por parte do conteúdo e deixe de trabalhar com unidades imprescindíveis para o efetivo aprendizado. A liberdade sem restrições possibilita a exploração e a descoberta, porém, é preciso algumas restrições à navegação para que o usuário atinja partes do conteúdo necessárias para o seu aprendizado (roteiro guiado). São necessários mecanismos que equacionem a apresentação do conteúdo de forma a que o aluno não fique desorientado e se disperse.
- c) Modelo de Interface deve ser compatível com o modelo conceitual e de navegação, ou seja, o *design* de interfaces precisa estar em harmonia com o conteúdo. A interface cria a identidade visual do produto e pode ser definida como um conjunto de elementos que apresentam a organização das informações e as ações do usuário. Segundo Primo, 96, deve haver um equilíbrio entre a organização das informações e a apresentação estética. Nos *coursewares*, a interface deve estar associada aos princípios da Percepção e da Cognição por isso é de fundamental importância que as mídias a serem usadas sejam bem escolhidas, pois, cada uma, motiva diferentes sentidos, que, em combinação, cria um todo perceptivo.
- 3°) Implementação a implementação abrange a produção ou reutilização e digitalização das mídias. É o processo de criar as mídias do projeto, incluindo os sons, as imagens, animações e vídeos utilizando *softwares* específicos. É preciso ainda verificar exaustivamente os textos para que não haja erro conceitual nem gramatical. Com relação às mídias é preciso considerar os direitos autorais, mesmo para as mídias disponíveis na rede deve-se colocar nos créditos a fonte.

A partir desse ponto inicia a fase final da implementação na qual o programador utiliza um Sistema de Autoria que ofereça os recursos necessários para integrar todas as mídias em uma estrutura interativa permitindo uma navegação lógica, intuitiva para que o aluno não fique desorientado. É a etapa de transferir os dados para o computador. Depois de implementado é preciso testar, testar, ... e testar para corrigir o que for necessário.

- 4º) Avaliação e Manutenção é a fase de testes, verificação das informações e correção dos erros de conteúdo e de gramática. A avaliação deve ser feita durante todas as fases do processo.
- 5°) Distribuição para a distribuição é preciso definir o módulo de execução, roteiro de instalação e a embalagem caso a distribuição seja em CD's.

A distribuição pode ser via rede. A *World Wide Web* criada no fim da década de 80 permitiu a inclusão dos avanços tecnológicos multimídia na rede, possibilitando a comunicação audiovisual na Internet. Isso implica na possibilidade de dispor na rede *coursewares* através dos recursos da hipermídia distribuída. A WWW está possibilitando o desenvolvimento e o acesso multi-usuário a documentos hipermídia gerados em diferentes plataformas. As aplicações hipermídia podem ser consideradas

coleções de *sites* ou páginas *web*, ligadas através de URLs (*Uniform Resource Locators*), acessados através de uma ferramenta de *browser* (navegador).

Construção de modelos através de storyboard

Modelagem é uma técnica que permite a construção de modelos e segundo Johnson-Laird, 97, "Modelo é a abstração de alguma coisa, cujo propósito é permitir que se conheça essa coisa antes de construí-la", como, por exemplo, um projeto arquitetônico ou o desenho feito por um estilista. Os modelos de uma aplicação hipermídia, de um modo geral, têm como objetivos:

- definir o domínio, dividi-lo em nós e estabelecer como os nós resultantes serãoconectados (modelo conceitual);
- determinar como o usuário vai interagir com a aplicação para diminuir a carga cognitiva e evitar a desorientação (modelo navegacional);
 - criar a identidade visual (modelo de interface).

Diferentes métodos têm sido propostos para ajudar na criação do modelo de uma aplicação hipermídia. Esses métodos ajudam a definir, limitar o escopo e a representar graficamente a rede de nós da aplicação. São eles:

- **HDM** (*Hypermedia design Model*)
- RMM (Relational Management Model)
- **HMT** (*Hypermedia Modeling Technique*) entre outros.

Na criação do modelo de aplicações educacionais, não muito complexas, pode ser utilizado o recurso *storyboard*.

Storyboard

O *storyboard* é uma ferramenta criada para o desenvolvimento de quadros (*frames*) que compõem uma animação. Existem aplicativos específicos para a criação de um *storyboard*, mas não é necessário aprender a usar um *software* para criar um *storyboard*. É perfeitamente aceitável, a concepção de um *storyboard*, de maneira informal, representando, de forma gráfica, a rede de nós de uma aplicação hipermídia.

Um *storyboard* pode representar um esboço do modelo de uma aplicação e mostrar como seus elementos estarão organizados. Ajuda no planejamento do conteúdo de cada unidade, na disposição das mídias, é o "rascunho" da aplicação permitindo aos responsáveis pelo projeto visualizarem sua estrutura de navegação, ou seja, discutirem a seqüência do conteúdo e fazerem as revisões e o acompanhamento necessários para o bom andamento do trabalho.

Um *storyboard* permite variar o nível de detalhamento para representar os resultados advindos da fase de análise e planejamento e a descrição da interatividade prevista no *courseware* instrucional. O *storyboard* é criado depois da análise e planejamento. Para construir um *storyboard* é válido seguir as etapas:

• organizar o conteúdo, relacionado ao tema da aplicação, de forma lógica;

- determinar as estruturas de acesso, ou seja, o controle da navegação;
- especificar o conteúdo a ser exibido e as mídias a serem utilizadas em cada tela. As telas são representadas por quadros e cada quadro de um *storyboard* deve mostrar o conteúdo desta tela.

O storyboard pode ser feito em um editor de texto, no Power Point ou simplesmente à mão. Deve ser um roteiro em que é colocada uma indicação do que estará em cada tela, deve ser, na verdade, um mecanismo de auxílio à programação. No storyboard não se coloca a imagem que vai aparecer na aplicação basta usar uma convenção e uma indicação de onde vai "sair" aquela imagem, qual o arquivo e onde ele se encontra. Um storyboard nada mais é que um esboço, geralmente na forma gráfica, do que a aplicação conterá e de como os seus componentes serão dispostos. Exemplos de storyboard informais.

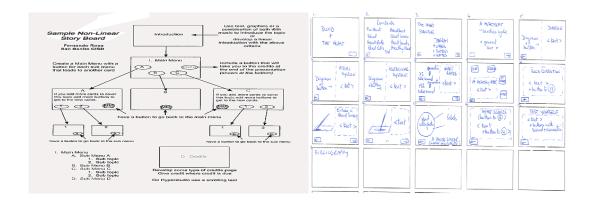
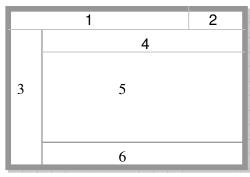


Figura 2: Exemplos de storyboard


Organização dos quadros em um storyboard

	Número da tela:
Tela = informações contidas	Identificação da página:
	Instruções para a programação:

Figura 3: Exemplo da organização das informações em uma tela

8 _______ V. 3 Nº 1, Maio, 2005

• Tela – representa a página da aplicação, onde estarão os objetos com as informações (conteúdo) nas mais diversas mídias e que serão vistas pelo usuário-aluno. A tela pode ser dividida em áreas, chamadas de campos, tal como:

- 1 cabeçalho com ou sem logomarca
- 2 numeração da página
- 3 *links* para a navegação aleatória
- 4 título do conteúdo da página
- 5 conteúdo relacionado ao título acima
- 6 *links* (botões) da navegação seqüencial

Figura 4: Exemplo das áreas padrões de uma tela

- Número da tela é formado por uma numeração progressista que indica a ordem de acesso à página, ou seja, determina a navegação. É colocada no campo 2 da figura acima;
- Identificação da página é a referência ao conteúdo da página, ou seja, é o nome da página. Indica ao usuário onde ele se encontra dentro da aplicação, isso evita a desorientação. Normalmente é colocada no campo 4;
- Instruções para programação descrevem que objetos serão usados naquela tela, quais as mídias, ou seja, o nome dos arquivos que contém as mídias. Indicam cores, fontes, texturas a serem usadas, ou seja, fornecem informações para a programação da página relacionada aos objetos que estarão no campo 5;

Normalmente é usada uma convenção, proposta pela equipe, para indicar cada tipo de objeto de tal forma que seja reconhecido naquela posição que objeto deve aparecer. Tem-se por exemplo:

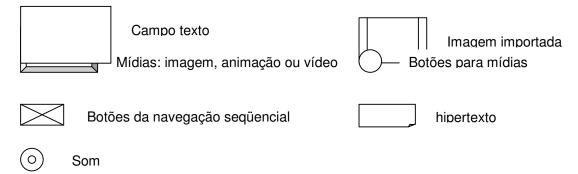


Figura 5: Elementos padrões para a convenção de objetos

A distribuição dos objetos na tela, referentes ao conteúdo da aplicação pode obedecer ao esquema abaixo que mostra a posição de cada objeto na tela.

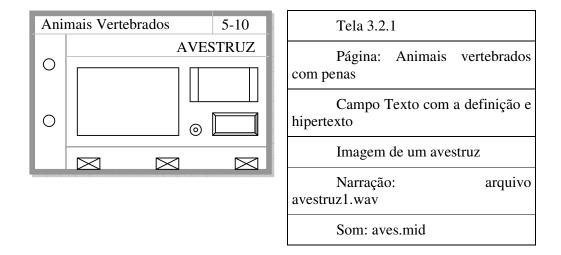


Figura 6: Exemplo da distribuição das informações em uma tela

Os quadros de um *storyboard* podem estar dispostos de outras formas, tal como abaixo em que as informações são descritas sob cada quadro.

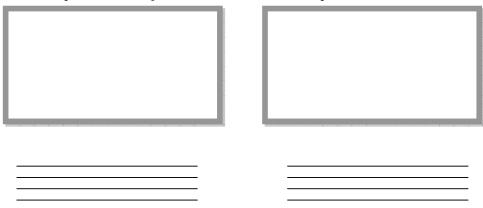


Figura 7: Exemplo da disposição dos quadros de um storyboard

Estruturas de acesso: navegabilidade

A disposição dos quadros no *storyboard* pode mostrar as estruturas de acesso, ou seja, como é feita a navegação dentro da aplicação. Existem as seguintes possibilidades:

• Estrutura de navegação seqüencial – os quadros são dispostos linearmente, tal como:

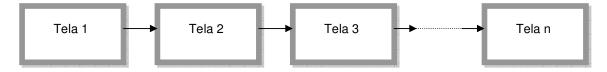


Figura 8: Disposição dos quadros na navegação seqüencial

• Estrutura de navegação hierárquica - ou estrutura na forma de "árvore". A numeração das telas indica a navegação:

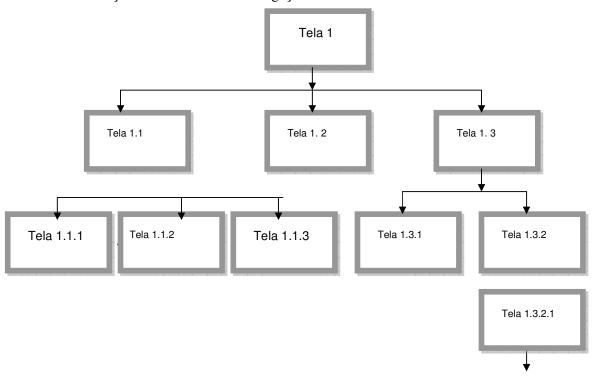


Figura 9: Disposição dos quadros na navegação hierárquica

ullet Estrutura de navegação web – ou estrutura em rede, a navegação $\acute{\mathrm{e}}$ aleatória.

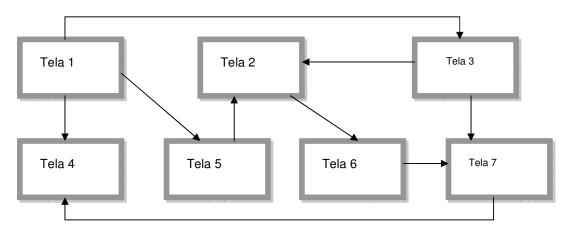


Figura 10: Disposição dos quadros na navegação em rede

Telas de uma aplicação

Em uma aplicação hipermídia, educacional ou não é comum, além das telas com o conteúdo, ter-se uma tela de apresentação, de créditos e de menu, quando esse não fica disponível em todas as páginas da aplicação.

A tela de Apresentação é a primeira tela e deve identificar a aplicação. Deve ser atraente, com efeitos, letras "vistosas", animações, som... Ela deve seduzir o leitor. Seu *layout* deve estar em harmonia com o restante da aplicação embora não necessite exibir os objetos padrões das páginas de conteúdo. É preciso um mecanismo para desviar para a próxima tela tal como um botão diferenciado, um objeto transparente, etc... Muitas aplicações possuem o menu na primeira página.

A tela de Créditos é a tela que mostra os "autores da obra". Como uma aplicação hipermídia, normalmente, é um trabalho de equipe, o nome dos diversos profissionais e muitas vezes um pequeno currículo de cada um é mostrado na aplicação, além da fonte das mídias utilizadas e não criadas pela equipe. Às vezes os créditos são disponibilizados, via um botão específico, que o leitor pode ou não acessar, mas muitas vezes o acesso é forçado, ou seja, ao se terminar uma sessão com a aplicação o botão de finalizar leva para a tela de créditos. Isto implica que os leitores tenham, sempre, acesso às informações relacionadas aos créditos.

A tela Menu é a tela com as opções básicas da aplicação que determinam a navegação entre contextos. Cada opção desvia para uma tela específica que pode ter outro menu. As telas subseqüentes obedecem a uma padronização, ou seja, seu *layout* é definido através da chamada "tela padrão" que estabelece a posição dos botões, a identificação de cada tela, a localização de uma logomarca, se houver, ou de qualquer outro objeto comum a todas as telas. É lógico que dependendo do tipo de aplicação, do público alvo (criança, adolescente, adulto) existem variações significativas. Para maior praticidade na navegação é interessante projetar o menu disponível em todas as telas. Ao ser feito um desvio é aconselhável que a tela destino tenha uma identificação que assegure ao usuário que ele está no "lugar certo" e nela será encontrado o conteúdo previsto e nas mídias pré-determinadas.

É aconselhável que o botão para finalizar uma sessão esteja visível em todas as telas para que o usuário possa terminar um trabalho a qualquer instante sem precisar de muitos "cliques" para isto.

Implementação

Concluído o *storyboard* começa a implementação e normalmente são usados os recursos de um Sistema de Autoria para a programação. Esses sistemas são *softwares* específicos para o desenvolvimento de aplicações hipermídias. Possuem ferramentas de autoria, recursos de multimídia e hipertexto. São baseados na programação orientada a objetos. Permitem projetar, criar, testar e implementar *coursewares* instrucionais. Os Sistemas de Autoria mais comuns são:

- Power Point é um aplicativo que permite criar apresentações com recursos multimídia e materiais educativos simples e criativos;
- Everest é um software de autoria, em Português, uma espécie de oficina de criação, com diversas ferramentas que permitem o desenvolvimento de aplicações com muita facilidade, sem necessitar de conhecimentos de programação,

agregando elementos como sons, imagens, vídeo, textos, animações e bancos de dados.

- Hypercard baseados em pilhas. Os elementos são organizados como uma pilha de fichas e podem ser vistas em seqüências diferentes
- IconAuthor e AuthorWare baseados em ícones. Os elementos de multimídia e os eventos de interação são organizados como objetos em um processo estrutural. Cria-se uma estrutura ou fluxograma de eventos, tarefas e decisões, arrastando os ícones apropriados a partir de uma biblioteca. Este fluxograma representa graficamente a lógica do projeto. Após a criação da estrutura adicionam-se os conteúdos textos, gráficos, animações, sons e vídeos.
- ToolBook surgiu como uma ferramenta de autoria voltada para multimídia em geral, mas, atualmente é focada no desenvolvimento de aplicações deaprendizagem (e-Learning), treinamento baseado em computador, tutoriais, simulações e cursos online, via web ou em CD. Possui uma poderosa linguagem de programação, o OpenScript. É uma ferramenta específica para a plataforma Windows e possui muitos recursos de integração com o sistema, como uso de controles ActiveX e inserção de objetos OLE.
- Macromedia Director é uma ferramenta de autoria voltada para a multimídia interativa, animações e jogos, em CD e Internet. Na Internet, suas aplicações rodam através do plugin para web Macromedia Shockwave. Utiliza uma linha de tempo visual para seqüenciar os eventos de uma aplicação multimídia. É uma ferramenta multi-plataforma, sendo capaz de gerar arquivos executáveis em Windows e Macintosh (sua plataforma de origem). O Director é baseado na metáfora de "filmes". Cada arquivo é um filme, em que o andamento da aplicação se dá em um roteiro que exibe a seqüência de quadros (frames) que são exibidos na tela nodecorrer do tempo. Os objetos são chamados atores e são agrupados em elencos.
- Flash-MX é um software que disponibiliza ao usuário o uso e aplicação dos recursos para criar animações multimídia, baseadas em imagens vetoriais e, agregado à linguagem de autoria *Action Script* permite criar aplicações hipermídia educacionais ou não. O Flash-MX trabalha com o conceito de painéis que é uma área delimitada que pode ser minimizada ao ser clicada. Os painéis são utilizados para auxiliar no acesso a vários comandos, principalmente em projetos muito complexos que envolvem *design* e programação.

O processo de implementação começa com a determinação do espaço a ser ocupado pelas informações, ou seja, o tamanho das páginas, logo depois, a programação da tela padrão que é a programação do *background*. Devem ser estabelecidos a área de navegação com os botões e todo e qualquer objeto compartilhado em todas as telas tal como o cabeçalho ou nome da aplicação, uma logomarca, etc...além das cores e fontes a serem usadas.

A tela padrão deve ser das cores escolhidas ou ter uma imagem de fundo e conter no mínimo os botões da navegação seqüencial. Podem aparecer todos simultaneamente ficando desabilitado quando não for necessário. É aconselhável que o botão de saída da aplicação esteja em todas as telas, a menos que o *layout* proposto pelo *designer* não preveja isso.

Ao término da fase de autoria, a aplicação não deve conter erros de conteúdo nem de português, e deve ser testada, em diversas máquinas, com diferentes versões de sistemas para verificar seu comportamento, só então ser gerado o código executável que permite que a aplicação seja executada em qualquer equipamento sem o *software* de autoria. O código executável exige que na máquina do usuário sejam instaladas as DLL's (*Dynamic Language Link*) que são um conjunto de arquivos conhecidos como *Runtime*. Esses arquivos devem ser instalados junto com a aplicação. A partir daí é preciso se preocupar com a distribuição do produto. É preciso observar alguns detalhes finais e escolher o meio de distribuição através do qual o usuário vai interagir com a aplicação.

Para a distribuição, todos os arquivos utilizados, como ícones, cursores, imagens, sons, vídeos, animações, etc... devem ser colocados juntos com o arquivo da aplicação. Isso significa colocar todos os arquivos .wav, .mid, .mp3, .avi, .ico etc...e o arquivo da aplicação salvo como .exe, em um mesmo diretório (pasta). A distribuição pode ser via CD-ROM's, redes locais com a aplicação instalada no servidor, ou ainda na Internet / Intranet.

Conclusão

O uso crescente de materiais educativos digitais e a difusão da *web* abrem novas possibilidades no processo de ensino e aprendizagem através de interações mediadas pelo computador. Por outro lado, trazem, também, desafios para os desenvolvedores de *softwares* educacionais e para os professores, exigindo a definição clara dos objetivos educacionais a serem alcançados, o correto conhecimento do público-alvo e a incorporação dos fundamentos básicos da teoria de aprendizagem selecionada relacionada ao modelo.

Os materiais educativos digitais podem adotar diferentes modelos de aprendizagem, tais como: descoberta imprevista, aprendizagem por descoberta, roteiro guiado, navegação por caminhos hierárquicos e navegação por apresentação seqüenciada de informações. A modelagem de cada tipo requer um esforço adicional do responsável pelo desenvolvimento dado à especificidade de cada formato e a flexibilidade nas interações do aluno com a aplicação, pois, a navegação do aluno pela aplicação é dependente do modelo de aprendizagem adotado na fase de modelagem do material educacional.

Aos professores, usuários de materiais digitais cabem reconhecer os modelos educacionais retratados nas aplicações hipermídia educacionais, selecionar o que melhor se adapta à sua prática pedagógica e explorar todos os recursos oferecidos para contemplar simultaneamente produtividade, eficiência e qualidade no ensino a fim de facilitar a aprendizagem.

Concluindo, a concepção e o desenvolvimento de um material educativo digital, centrado no aluno aprendiz, envolvem além do conteúdo, da exposição desse conteúdo na aplicação e na forma de acessá-lo, o *design* da interface, que deve ser baseado nas teorias da percepção visual, nos conceitos de semiótica e, principalmente, nas abordagens da ergonomia. Segundo Falkembach, 01, uma tendência na área educacional é o uso dos recursos oferecidos pela hipermídia adaptativa para o desenvolvimento de *coursewares* adaptáveis ao perfil do aluno visando uma aprendizagem mais efetiva adequando as estratégias de ensino ao estilo de aprendizagem do aluno.

14 _______ V. 3 No 1, Maio, 2005

Referência Bibliográfica

- ANTUNES, Celso. Como desenvolver conteúdos explorando as inteligências múltiplas. Petrópolis: Editora Vozes, 2003. 54p.
- FALKEMBACH, G. M. **Informática na Educação: Novos paradigmas** I Congresso Nacional de Escolas Franciscanas Santa Maria -2000
- FALKEMBACH, G. A. M. Adaptive hypermedia: An option for the development os educacional systems in order to getting more effective learning. In: International conference on new technologies in science education, Aveiro Portugal Proceedings International Conference on New Technologies in Science Education. 2001.
- JOHNSON-LAIRD, P.N. **Mental Models. Cognitive Science** . Harvard Univers. Press, Cambridge, Mass., 1997
 - MOREIRA, M. A. **Teorias de Aprendizagem** E.P.U. São Paulo,1999
- SILVEIRA, S.R. Estudo e Construção de uma ferramenta de autoria multimídia para a elaboração de jogos educativos. Dissertação de Mestrado POA-PPGC UFRGS, 1999
- BORDENAVE, J.D., PEREIRA, A.M. **Estratégias de Ensino – Aprendizagem** Ed Vozes –1997 Petrópolis Rio
- PRIMO, A. F.T. **Multimídia e Educação**. Revista de divulgação cultural, Blumenau, SC, nº 60 1996
 - PRIMO, A. F. T. **Um novo meio chamado "multimídia"** disponível em:
- $\underline{\text{http://virtual.inesc.pt/virtual/CGME99/actas/lista_artigos.html}} \quad \quad \quad \text{Projeto} \\ IDEALS$
- VALENTE, J.A. **Diferentes Usos do Computador na Educação**. Em J.A. Valente (Org.), *Computadores e Conhecimento: repensando a educação* (pp.1-23). Campinas, SP: Gráfica da UNICAMP. 1993