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Abstract: Clustering algorithms have been actively used to identify similar time
series, providing a better understanding of data. However, common clustering dis-
similarity measures disregard time series correlations, yielding poor results. In this
paper, we introduce a dissimilarity measure based on series partial autocorrelations.
Experiments compare hierarchical clustering algorithms using the common dissimi-
larity measures, such as Euclidean Distance and Dynamic Time Warping, to cluster
time series following Box-Jenkins Auto-Regressive models. Results show that our
dissimilarity measure produces better results for both synthetic and real data sets in
terms of the Adjusted Rand Index and Normalized Hubert Γ statistic. Our findings
confirm that the choice of dissimilarity measure is crucial for improving time series
clustering quality.

1 Introduction

Clustering [1, 2, 3] is one of the most employed Machine Learning techniques [4],
since it does not require labeled data. For real-world problems, where human labeling is too
costly, or there is simply no supervision available, clustering is a specially useful tool.

Consider, for example, a stock market investor who wishes to find the best stocks to
create a portfolio. Ideally, the portfolio should be diversified, containing several companies
from different economy sectors. Diversification allows the losses in one sector to be compen-
sated by the profits in another.

Figure 1 illustrates the benefits of diversification by showing the stock price evolution
of two Brazilian companies, one from the oil sector (Petrobrás) and the other from banking
(Itaú/Unibanco). In several moments, the lows in one stock were compensated by the highs
of the other. Time series clustering provides an intuitive understanding of the relations among
stock price series. An investor can choose one or several companies from each cluster, better
diversifying his/her portfolio and minimizing the loss margin.

Clustering algorithms can identify which time series are more similar, providing a
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Figure 1: Daily close prices of two Brazilian companies, one from the oil market sector (Petrobrás) and one from
banking (Itaú/Unibanco). The moments when one of the stocks was low were compensated by the other highs.
Clustering of stock price series may help an investor diversify his/her portfolio, minimizing the margin for loss.

better understanding of data. Formally, a clustering algorithm can be seen as a function f
which maps every object xi ∈ X to a cluster Cj ( C, i.e., f(xi) 7→ Cj .

Several clustering algorithms are available, which can be generally divided into: 1)
partitional, which generate a set (partition) of disjoint subsets (clusters) containing objects;
and 2) hierarchical, which output a sequence of nested partitions.

Hierarchical algorithms present interesting advantages over the others. First, they do
not require a pre-defined number of clusters, which is usually an input to partitional meth-
ods. Second, the output of a hierarchical algorithm can be represented by a dendrogram, an
intuitive visualization method that simplifies interpretation by domain specialists. Third, hi-
erarchical methods can work without data objects, solely requiring a proximity matrix. This
feature is specially interesting when dealing with private information, such as banking data
bases.

In this paper, we show how traditional dissimilarity measures disregard the most im-
portant time series characteristic, i.e., the serial correlation. To overcome that drawback, we
propose a dissimilarity measure based on series partial autocorrelations.

Experiments evaluated traditional clustering algorithms, namely Single-linkage,
Complete-linkage and Average-linkage [1], along with various dissimilarity measures, such

26 RITA • Volume 20 • Número 1 • 2013



Common Dissimilarity Measures are Inappropriate for Time Series Clustering

as Euclidean Distance, Dynamic Time Warping [5] and correlation-based measures, to cluster
time series data bases.

Several synthetic data bases were generated in order to have known clusters as a
golden truth for evaluation purposes. The clusters corresponded to series modeled by Auto-
Regressive (AR) processes [6]. Next, experiments were conducted with real time series,
originated from physiological sensor measurements.

This paper is organized as follows. In the next section, the basic concepts of hierar-
chical clustering are presented. Section 3 contains a brief introduction of time series and the
AR models proposed by Box-Jenkins. Next, Section 4 introduces related work. In Section 5,
the experimental methodology is discussed, while results are presented in Section 6. Lastly,
Sections 7 and 8 contain the discussion and conclusion.

2 Hierarchical Clustering

According to Jain and Dubes [1], clustering is a partitioning of a finite set of objects.
A proximity matrix, whose rows and columns represent objects, defines their relations. If
objects are, for example, points in a multidimensional space, then the proximity among them
can be given by a distance function, such as the Euclidean distance.

Formally, a hierarchical clustering method can be defined as a procedure to trans-
form a proximity matrix into a sequence of nested partitions [1]. For example, let
X = {x1, x2, . . . , xn} be a set of objects. A partition C divides X into subsets C =
{C1, C2, . . . , Ck} that satisfy: Ci ∩ Cj = ∅(∀i 6= j) and C1 ∪ C2 ∪ . . . ∪ Ck = X .
A partition C1 is nested into C2 if every component of C1 is a subset of a component of C2.

Hierarchical algorithms can be either agglomerative or divisive [1]. All agglomerative
algorithms choose, based on the proximity matrix, the most similar groups to be merged.
The difference among the various algorithms is in how they update the proximity matrix for
the next iteration, assigning a new distance to the groups after merging them. In the Single-
linkage algorithm, the proximity between groups is given by the minimum distance between
objects within different clusters. Conversely, for Complete-linkage the distance is given by
the maximum dissimilarity between objects. Finally, for Average-linkage, the distance is the
average among all pairs of objects belonging to clusters.

Each update criteria has a bias towards a type of hierarchy, which has pros and cons.
The advantage of Single-linkage is its ability to find arbitrarily shaped clusters, but it has the
drawback of being highly sensitive to noise and outliers [1]. Complete-linkage, on the other
hand, is less susceptible to noise and outliers, but tends to break large clusters. It also cannot
deal with arbitrarily shaped clusters as Single-linkage [1]. Lastly, Average-linkage represents
a compromise between Single and Complete-linkage, by being less susceptible to noise and
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outliers, but unable to find arbitrarily shaped clusters [7].

After obtaining the hierarchy, it is usually desired to select a partition at some level,
where the number of clusters fits a desired value. To do that, a cut is made in the dendrogram.
Figure 2 presents a sample dendrogram with a horizontal cut to obtain four clusters.
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Figure 2: Sample cut into four clusters in a dendrogram obtained using Complete-linkage over a data set with nine
objects. The resulting partition is: C = {{x1, x2}, {x3}, {x4, x5, x6}, {x7, x8, x9}}.

3 Time series

Formally, a time series is defined as a sequence x = (x1, x2, . . . , xn), where n is
the number of observations and xt, t ∈ {1, 2, . . . , n}, is the observed value at time t. For
example, a time series can be the precipitation in millimeters in a city, stock market prices,
annual number of solar flares, etc.

A common way to analyze time series is by using the parametric models proposed by
Box-Jenkins [6, 8]. For example, an Auto-Regressive (AR) model takes current values to be
a linear combination of past ones plus white noise. Moving Average (MA) models consider
linear combinations of white noise inputs. Auto-Regressive Moving Average (ARMA) com-
bines both models. Lastly, Auto-Regressive Integrated Moving Average (ARIMA) addition-
ally considers non-stationary behaviors. In the experiments reported here, only AR models
were used, as they are one of the simplest, but useful to represent several real phenomena [6].

Auto-Regressive models are part of a set of linear stationary models, which make the
assumption a series is generated by a linear system, having white noise as input (Figure 3).
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Discrete white noise is defined as {εt, t ∈ Z}, in which Z is a stochastic process, stationary if
∀t, E(εt) = µε and V ar(εt) = σ2

ε , where E(·) is the expected value of the random variable,
V ar(·) is its variance, µ is its mean and σ is the standard deviation. The system, or linear
filter, is defined according to Equation 1, with output Zt, in which at is the input, Ψ(B) is
the transference function and B is the backward shift operator (defined in Equation 2). That
operator retrieves series values at past time instants, such that t is the current time and m is
the delay.

Linear Filter
Ψ(B)

at Zt

Figure 3: Representation of a linear filter. The input at is white noise, which is submitted to a transference function
Ψ(B), with output Zt.

Zt = µ+ at + ψ1at−1 + . . . = µ+ ψ(B)at (1)

BZt = Zt−1, B
mZt = Zt−m (2)

In that system, µ defines the level of the series. In case the sequence of coefficients
ψj , j ≥ 1 is finite or infinite but convergent, the filter is stable, Zt is stationary and µ is the
mean of the process. Defining Z̃t = Zt − µ, then Z̃t = ψ(B)at. It is possible to rewrite Z̃t
as a weighted sum of past values plus noise at:

Z̃t = π1Z̃t−1 + π2Z̃t−2 + . . .+ at (3)

In case πj = 0 and j > p, an auto-regressive model of order p is obtained, commonly
denoted as AR(p). Renaming the coefficients πj to φj :

Z̃t = φ1Z̃t−1 + φ2Z̃t−2 + . . .+ φpZ̃t−p + at (4)

In the simplest case an auto-regressive model of order p = 1, or AR(1), is obtained,
which is defined as:

Z̃t = φZ̃t−1 + at (5)

In that case, Zt only depends on the value of the previous instant Zt−1 and the noise
at time t. A useful method to analyze the relationship among observations of a time series is
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through autocorrelation, which measures the similarity of observations over time. Consider-
ing Zt is a second-order stationary process, then the mean µ and variance σ2 are independent
of time and the autocorrelation depends only on the time delay between observations, but not
their absolute positions in time. That allows the autocorrelation function to be expressed as
in Equation 6, in which τ is the lag (delay) in time, µ is the mean and σ2 is the variance.

R(τ) =
E[(Zt − µ)(Zt+τ − µ)]

σ2
(6)

Besides autocorrelation, another useful measure is the partial autocorrelation, which
is simply the autocorrelation between Zt and Zt−τ which excludes lags 1 to τ − 1. That
simplifies the identification of order p in an Auto-Regressive model.

In this paper, we show how the traditional dissimilarity measures disregard the inher-
ent serial correlations present in time series and how that critically affects clustering perfor-
mance. A new measure based on series partial autocorrelations is then developed to overcome
this drawback (Section 5.2.1).

4 Related work

Classical works on time series similarity [9, 10, 11] have focused on the concept of
longest common subsequence. While those techniques may work for certain kinds of time
series, namely ones that are similarly shaped, they do not consider the intrinsic correlations
present on the time series, which originate from their underlying mathematical model, thus
disregarding important information.

Ding et al. [12] conducted a large scale study comparing nine dissimilarity measures
for time series, including the L-norms [13]: L1 norm (Manhattan distance), L2 norm (Eu-
clidean distance), L∞; DISSIM [14], which computes the similarity of time series with dif-
ferent sampling rates; Dynamic Time Warping (DTW) [5]; Edit distance based measures
[15, 16, 17, 18]: Longest Common Subsequence (LCSS), Edit Sequence on Real Sequence
(EDR), Swale, and Edit Distance with Real Penalty (ERP); the Threshold query based sim-
ilarity search (TQuEST) [19] and Spatial Assembling Distance (SpADe) [20]. The authors
concluded that the accuracy of elastic measures such as DTW and Edit distance-based ones
converge to that of Euclidean distance as the data set size increases. The accuracy of the
Edit-distance based similarities are very close to that of DTW. TQuEST and SpADE are, in
general, inferior to DTW. In summary, the authors find that DTW is in general the best simi-
larity measure for mining time series data bases. In this paper, we show that even for simple
models, such as the Autoregressive models proposed by Box-Jenkins, DTW cannot find a
clustering structure.
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In a recent study, Rakthanmanon et al. [21] proposed a method to search and mine
trillions of time series subsequences by using Dynamic Time Warping. The authors point
out that most time series mining algorithms make extensive use of similarity comparisons
and that there is increasing evidence that the classic Dynamic Time Warping (DTW) distance
measure is the best one for dissimilarity calculations. While we agree that for various domains
DTW has very good results, we show in this paper that even for very simple, yet realistic
mathematical time series models, DTW has very poor performance due to the fact that it
regards observations of a time series as independent variables.

5 Experimental Methodology

Experiments aimed to show how time series serial correlations affect clustering qual-
ity. They also show the poor results obtained with traditional dissimilarity measures that
disregard such correlations.

To execute the experiments in a controlled scenario, where clusters were previously
known, synthetic time series following Box-Jenkins AR processes were generated. In total,
30 data bases composed of 15 series each (5 per cluster) were used. Each cluster was com-
posed of series following the same AR model, for example, the first cluster was composed of
AR(1) series, the second of AR(2) and so forth.

To compare the results of the algorithms on the AR series, we also generated 30
synthetic data bases following Gaussian distributions, i.e., independent and identically dis-
tributed data. That allowed the evaluation of clustering quality in the absence of temporal
dependencies. Figures 4a and 4b present the correlations among the first ten observations of
an AR(p) and a Gaussian data base respectively. One observes there is stronger correlation
in the AR(p) base.

Finally, to evaluate the algorithms in a real scenario, a data set from physiological
sensors of the ICML 2004 challenge was used1. The data set was gathered from wearable
sensors. In total, nine sensors were used in different persons of both genders during the prac-
tice of physical activities. Table 1 presents a brief description of each sensor functionality.

Thirty physical exercise sessions of different people were used. The time series ob-
tained from sensor measurements of one person during a physical session formed each one
of the data bases.

Table 2 summarizes the description of all data bases used in the experiments. Since
for ICML bases the clusters were not previously known, the fields “Cluster”, “Model” and
“#Series” have missing values.

1Data available at: http://www.cs.utexas.edu/~sherstov/pdmc/. Last visit: 22 June 2011
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Correlations for synthetic AR data base
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(a) Correlations among the observations of an
AR(p) data base.

Correlations for synthetic Gaussian data base
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(b) Correlations among the observations of a
Gaussian data base.

Figure 4: The charts present the correlations among the first ten observations of an AR(p) and a Gaussian data
base. The more the figures resemble a compressed ellipse, the stronger the correlation between observations. Figures
closer to a circle indicate absence of correlation. Right tilted ellipses represent positive correlation, while left tilted
negative correlations. Darker gray tones also indicate stronger correlation (either positive or negative).

Table 1: Description of sensors used to obtain the time series from the ICML 2004 data base.

# Sensor Measurement
1 Galvanic skin response
2 Heat flux
3 Approximate body temperature
4 Pedometer
5 Mean skin temperature
6 Longitudinal accelerometer SAD
7 Mean longitudinal accelerometer
8 Transverse accelerometer SAD
9 Mean transverse accelerometer
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Table 2: Description of the data bases.

Data # Bases # Series
per base

# Observ.
per series Type Cluster Model # Series

AR(1) AR(φ1 = 0.5) 5
AR(p) 30 15 100 Real

values AR(2) AR(φ1 = 0.5, φ2 = 0.3) 5
AR(3) AR(φ1 = 0.5, φ2 = 0.3, φ3 = 0.1) 5

Gaussian1 N(µ = 1.0, σ = 0.8) 5
Gaussian 30 15 100 Real

values Gaussian2 N(µ = 1.5, σ = 0.8) 5
Gaussian3 N(µ = 2.0, σ = 0.8) 5

ICML
2004 30 9 765 Real

values ? ? ?

The Adjusted Rand Index (ARI) criteria was used to evaluate the algorithms on the
AR(p) and Gaussian data bases, since the correct partitions were previously known. ARI is
based on the counting of point pairs on which both partitions agree or disagree [22]. Any
pair of points can be placed in one out of four categories: (1) they are in the same cluster
in both partitions (N11), (2) in different clusters in both partitions (N00), (3) they are in the
same cluster in the first partition and in different clusters in the second one (N10) and (4) they
are in different clusters in the first partition and on the same in the second (N01). The values
N11 and N00 can be seen as measures of agreement between partitions, while N10 and N01

as measures of disagreement.

Given two partitions of a set S of N objects, let U = {U1, U2, . . . , UR} be the first
partition with R clusters and V = {V1, V2, . . . , VT } the second partition with T clusters. Let
∩Ri=1Ui = ∩Tj=1Vj = ∅,∪Ri=1Ui = ∪Tj=1Vj = S. It is possible to create a contingency matrix
NR×T , whose nij element is the number of objects in common to clusters Ui and Vj . The
Adjusted Rand Index, assuming a hypergeometric distribution as the model of randomness,
takes values close to zero for two random partitions and close to one when both partitions are
practically identical. The index can be computed according to Equation 7, in which nij is an
element of the contingency matrix, ai is the sum of the i-th row and bj is the sum of the j-th
column.

ARI =

∑
ij

(
nij

2

)
− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
N
2

)
1
2 [
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
N
2

) (7)

For evaluating ICML data bases, the quality index used was the Normalized Hubert
Γ statistic between the cophenetic matrix2, obtained from the clustering procedure, and the
proximity matrix. The statistic computes the correlation between the matrices (Equation 8).
In that equation, Λ is the cophenetic matrix, D is the original dissimilarity matrix, µ is the

2The Λn×n cophenetic matrix of a set of n objects has as its λij element the dissimilarity with which the (i, j) pair
of objects were joined.
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mean, n is the number of objects and M = n(n−1)/2 is the number of pairs of objects. The
calculation is done only for the upper triangulars, since both matrices are symmetric. Values
close to 1 indicate better compatibility between the clustering and the proximity matrix P .

Γ =
1

M

n−1∑
i=1

n∑
j=i+1

[Λ(i, j)D(i, j)]− µΛµd

· 1√
1
M

∑n−1
i=1

∑n
j=i+1 [Λ(i, j)]

2 − µΛ

· 1√
1
M

∑n−1
i=1

∑n
j=i+1 [D(i, j)]

2 − µd

(8)

5.1 Dissimilarity Measures

Each one of the clustering algorithms has been executed with at least five dissimilarity
measures. Euclidean distance was one of the measures used, although popular, it is not
considered to be a robust measure for time series clustering. Dynamic Time Warping was also
used, since it is regarded as one of the best time series distance functions. Two correlation-
based measures were also used, Pearson and Spearman, but transformed into dissimilarities
since they originally compute similarity. Lastly, a distance based on the Cosine similarity
was used.

5.1.1 Euclidean Distance Euclidean distance is one of the most popular dissimilarity
measures in Machine Learning. It is a specific case of the Minkowski norm (Equation 9) with
p = 2. Euclidean distance favors the discovery of globular clusters. For time series it is not an
ideal distance, since it disregards time axis misalignments. Figure 5a illustrates this problem.
While Euclidean distance considers the same time indexes for computing the dissimilarity
(subscripts i in Equation 9), if there is misalignment in time, the distance is greater than
it would be in case the offset was zero. Figure 5b presents the alignment considered by
Dynamic Time Warping, which addresses this drawback.

distx,y =

(
n∑
i=1

|xi − yi|p
)1/p

(9)

5.1.2 Dynamic Time Warping The Dynamic Time Warping (DTW) distance [5], con-
siders time axis offsets when comparing two time series, as presented in Figure 5. Because
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(b) Alignment according to Dynamic Time Warping.

Figure 5: Sample case of time axis misalignment, which is not considered by the Euclidean distance. Other dissim-
ilarities, such as Dynamic Time Warping, are capable of detecting this problem and not penalize relations between
the series.
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it is a more robust measure than Euclidean distance and having been widely employed in the
literature, it was also selected for evaluation.

The computation of Dynamic Time Warping distance works as follows [23]. Consider
two time series X = x1, x2, . . . , xn and Y = y1, y2, . . . , ym. To align both sequences, a
matrix Dn×m is constructed, where element di,j contains the distance d(xi, yj) = (xi−yj)2

between points. Each element (i, j) is an alignment of points xi and yj . A warping path W
is a traversing of contiguous elements in the matrix, which defines a mapping betweenX and
Y . The k-th element of W is defined as wk = (i, j)k. Having that, W = w1, w2, . . . , wK is
obtained, withmax(m,n) ≤ K < m+n−1. Generally, the path in the matrix is a diagonal,
starting in opposite extremes of the matrix, for example w1 = (1, 1) and wK = (m,n).
Element wk has to be adjacent to wk−1, i.e., it is only allowed to select elements in the
path which are adjacent. The points in W must also be monotonically spaced in time. The
objective is to select the path that minimizes the cost of warping, according to Equation 10.

DTW (X,Y ) = min


√√√√ K∑
k=1

wk

 (10)

The evaluation of warping paths by DTW makes it possible to find the best synchro-
nization of both series, which allows the dissimilarity to be more robust to time axis misalign-
ments. Other commonly used dissimilarity measures are based on correlations, discussed
next.

5.1.3 1 - Pearson Correlation Distance The correlation proposed by Pearson [24] com-
putes the linear relationship between sequences of numbers, taking into account their mag-
nitudes. Equation 11 presents Pearson’s r coefficient, in which x and y are the averages of
sequences X and Y respectively. The values returned by Pearson’s r stay in interval [−1, 1],
simplifying interpretation and comparison. When the series are independent, their correlation
tends to zero. Conversely, when there is a perfect positive or negative linear relationship, it
tends to |r| = 1.

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(11)

Pearson correlation provides a measure of similarity between series. Because we
wish to compare time series based on their distances (or dissimilarities), the transformation
dPearson = 1− r is used.

A problem with Pearson correlation is its sensitivity to noise and outliers [25], besides
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being only capable of detecting linear relationships. Another measure, which minimizes these
problems, is Spearman correlation.

5.1.4 1 - Spearman Correlation Distance Spearman [26] is a specialization of Pearson’s
correlation, which considers only sequence ranks. That makes the measure more robust to
the presence of noise and outliers, as the magnitudes of the numbers are disregarded. When
there is a monotonically increasing or decreasing relation, Spearman is also able to detect
nonlinear similarities.

The value of Spearman correlation is computed in the same way as Pearson (Equation
11), however only the ranks of series elements are used. When there are ties among two or
more values, the ranks assigned to the tied elements are the sum of the ranks divided by the
number of repeated elements. For example, the sequence X = (1, 3, 3, 10) has rank(X) =
(1, 2.5, 2.5, 4).

As Spearman correlation is a measure of similarity, we use the same transformation
used for Pearson, which returns a dissimilarity (Equation 12).

dSpearman = 1− r(rank(X), rank(Y )) (12)

5.2 1 - Cosine similarity

The cosine similarity computes the cosine of the angle between two vectors in space
[7]. This can be interpreted as a way to check if both vectors point to the same direction. The
similarity is defined in the interval [-1,1], thus for turning it into a dissimilarity measurement
we convert it by rescaling into the range [0,1] and then subtracting from 1, as in Equation 13
for two vectors X and Y .

dcos = 1−
X·Y

||X||·||Y || + 1

2
(13)

The cosine similarity is useful for assymetric, non-binary attributes. Its most common
application is in text mining with word frequency tables, in which the absence of words in
a document should not contribute to the similarity calculation, but only the words that do
appear in the document. Although not a common similarity measure for time series, we also
test it because of its popularity in machine learning.

5.2.1 Dist_pacf distance The dissimilarity measures presented so far are commonly em-
ployed in the literature. However, they do not consider the inherent correlations of time series,
but analyze only one compared to the others.
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In this paper, we propose the use of a measure that takes into account serial correla-
tions. For that, the partial autocorrelation function, explained in Section 3, was used to define
a new dissimilarity measure.

The measure is described by Equation 14, in which pacf is the partial autocorrelation
of the series, δ is a parameter used by function first, which returns the initial δ partial
autocorrelations of the series (excluding the one with τ = 0, as it is always one). After
obtaining these sequences of δ partial autocorrelations, the Manhattan distance [7] between
them is computed, which is simply the Minkowski norm with p = 1 (Equation 9).

Dist_pacfδ(X,Y ) = Manhattan(first(pacf(X), δ),

first(pacf(Y ), δ))
(14)

The intuition behind this dissimilarity measure is that it initially evaluates the partial
autocorrelations of each series, with τ = 1, 2, . . . , δ, obtaining a better characterization of
which regressive model it follows. Next, with these new sequences, first(pacf(X), δ) and
first(pacf(Y ), δ), obtained for X and Y , their distance can be computed. The value re-
turned provides an estimate of how close are the regressive models that generated both series.

In the next section, experimental results with the hierarchical clustering algorithms
and dissimilarities discussed are presented.

6 Experimental Results

Experiments were executed in a machine with an Intel Core(TM) i7 @2.80Hz, 4 GB of
RAM and Ubuntu 11.04 operating system. The implementations were done in the statistical
computing software R 2.12.1 [27].

6.1 Experiments with synthetic data

In this section, results concern the synthetic bases generated with series following
Box-Jenkins AR models and the Gaussian data bases.

Table 3 presents the results with the execution of the algorithms and respective dis-
similarities on the AR(p) data bases. The results are generally around zero, according to
the Adjusted Rand Index. That indicates low quality clustering, comparable to what would
be obtained with a random data partitioning. In order to better evaluate these results, a new
set of experiments was executed using the Gaussian data bases, which contained statistically
independent data.
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Table 3: Results (ARI) for synthetic AR(p) data bases.

Dissimilarity Single-linkage Complete-linkage Average-linkage
Mean Stdev Mean Stdev Mean Stdev

Euclidean 0.015 0.017 0.097 0.085 0.036 0.054
DTW 0.016 0.026 0.071 0.101 0.040 0.049
1− Pearson 0.010 0.048 −0.009 0.080 −0.006 0.064
1− Spearman 0.017 0.072 0.001 0.091 0.003 0.070
1− Cosine 0.021 0.061 0.012 0.089 0.018 0.091
Dist_pacfδ 0.328 0.171 0.416 0.154 0.402 0.146

Table 4: Results (ARI) for synthetic N(µ, σ) data bases.

Dissimilarity Single-linkage Complete-linkage Average-linkage
Mean Stdev Mean Stdev Mean Stdev

Euclidean 0.177 0.222 0.683 0.211 0.630 0.220
DTW 0.191 0.228 0.711 0.214 0.620 0.220
1− Pearson −0.007 0.038 −0.009 0.073 −0.017 0.083
1− Spearman −0.005 0.025 0.016 0.085 0.001 0.084
1− Cosine 0.021 0.006 0.065 0.048 0.023 0.000
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Table 4 presents the results using the Gaussian data bases. Results were substantially
better with Complete-linkage and DTW dissimilarity. This shows that traditional clustering
algorithms, along with the commonly used dissimilarity measures, can find good partitions
when observations are independent and identically distributed, which for time series is not a
valid assumption, as they tend to be correlated.

To show how these results can be improved, taking into account the temporal rela-
tionship of the data, we proposed a dissimilarity measure, Dist_pacf, based on series partial
autocorrelations, described in Section 5.2.1.

Parameters τ = 20 and δ = 3 were used, as the synthetic series belonged to at most
an AR(3) process. Results of the proposed dissimilarity are presented in Table 3. The ARI
values are substantially greater than the other dissimilarities on the AR(p) bases.

We can also observe the improvement in the results by analyzing the dendrograms.
Figure 6a presents the dendrogram for Complete-linkage with Dynamic Time Warping, while
Figure 6b presents the dendrogram for Complete-linkage with Dist_pacf. Several objects
pertaining to the same cluster were joined together first in the hierarchy using the proposed
dissimilarity measure.

Another way to visualize the improvement of considering the serial correlations
present in data is by looking at the dissimilarity matrix generated by Dist_pacf. Figure 7a
presents the matrix for DTW, while Figure 7b presents the dissimilarity matrix for Dist_pacf.
Ideally, it is expected that clusters form well defined blocks, as illustrated in Figure 7c. We ob-
serve there is no cluster structure in the DTW matrix. On the other hand, Dist_pacf provides
a better identification of a clustering structure, although not perfect. It should be observed,
however, that the models used for the clusters were close to each other, in terms of regressive
coefficients (cf. Table 2), making it harder to obtain a high-quality crisp clustering.

6.2 Experiments with real data

Experiments using real data were also performed, employing physiological sensor
data from several individuals, as previously discussed in Section 5. Since in this scenario
there was no previously known ideal partition, the Adjusted Rand Index was not used for
validation. Instead, the Normalized Hubert Γ statistic was selected, which was discussed in
Section 5.

The results for these experiments are presented in Table 5. We observe greater values
of Γ are obtained, however, we note that the Γ statistic measures the correlation between
the cophenetic matrix and the proximity matrix, which tends to be high for a reasonable
clustering algorithm.

Figure 8a presents the dendrogram for the first data base using Euclidean distance. We
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Figure 6: The dendrograms show a comparison of Complete-linkage using Dy-
namic Time Warping and Dist_pacf. The clusters in this AR base were given by
{{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10}, {x11, x12, x13, x14, x15}}. Using DTW, the objects are
merged disregarding their correct cluster. With Dist_pacf, several objects were firstly merged with other objects
from their own cluster.
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(c) Ideal dissimilarities.

Figure 7: The matrices represent the level of dissimilarity measured between elements (i, j) according to some
distance. Darker gray indicates less distance (or more similarity). The visualization allows checking whether the
dissimilarity measure is adequately representing the clustering structure present in data. For DTW (a), we observe
there is virtually no cluster structure being identified. For Dist_pacf (b), the original cluster structure was partially
retrieved. In (c), we see the ideal cluster structure.

Table 5: Results (Γ) for real ICML 2004 data bases.

Dissimilarity Single-linkage Complete-linkage Average-linkage
Mean Stdev Mean Stdev Mean Stdev

Euclidean 0.959 0.028 0.961 0.025 0.966 0.020
DTW 0.855 0.085 0.876 0.062 0.892 0.045
1− Pearson 0.952 0.030 0.948 0.031 0.963 0.022
1− Spearman 0.947 0.031 0.945 0.031 0.960 0.021
1− Cosine 0.982 0.051 0.983 0.045 0.990 0.017
Dist_pacfδ 0.903 0.060 0.913 0.050 0.922 0.042
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note that some similar sensors were merged together first, as expected. For example, referring
back to Table 1 in Section 5, we see that sensors 2, 3 and 5 are related to the individual’s
temperature. Sensors 6 and 7 are related to the longitudinal accelerometer, while 8 and 9
to the transverse. It is expected that those sensors are merged together first in the hierarchy
produced by the clustering algorithms, as they provide related information. Figure 8b presents
the dendrogram for Dist_pacf. We observe that several sensors with related characteristics
were correctly merged together in a first stage.
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Figure 8: Dendrograms obtained for the first ICML 2004 data base. We observe several sensors with similar
functionality (see Table 1 in Section 5) were firstly merged using both dissimilarity measures.
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7 Discussion

The experiments presented in this paper show that traditional dissimilarity measures
do not produce satisfactory results for time series clustering, as they disregard autocor-
relations. To overcome this drawback, this paper proposes a new dissimilarity measure,
Dist_pacf, based on partial autocorrelations.

Experiments using synthetic data sets with time series simulated from Autoregressive
processes showed that Dist_pacf has better results than other commonly used dissimilarity
measures (see Table 3). This can be explained by the fact that most of the commonly used
dissimilarities completely disregard the intrinsic correlations among observations of a time
series. Most machine learning methods make the assumption that data are independent and
identically distributed, which is not the case with time series. This fact was illustrated in
Figure 4, which shows the strength of correlations for an AR and a Gaussian (i.i.d.) data
base, indicating that for proper time series data there is strong correlation present.

This limitation found on the common dissimilarity measures used for time series,
such as Dynamic Time Warping (DTW), can be easily observed in Figure 7, which presents
a gray-colored matrix with darker tones indicating more similarity. Ideally, for data with a
clear cluster structure and three clusters, there should be three well defined blocks of darkened
cells. In Figure 7 we see that DTW is unable to find any cluster structure in the AR data base.
The only darkened coloured cells are the ones in the main diagonal, which relates examples
to themselves. Our proposed dissimilarity measure was able to partially recover the cluster
structure. A perfect reconstruction was not possible because the autoregressive models of the
time series were close to each other, differing only by one or two autoregressive coefficients.

The experiments with real data sets from the ICML 2004 challenge showed that
Dist_pacf had competitive results as the other dissimilarity measures. It is important to note
why the other measures had better results than for the synthetic data bases. This can be ex-
plained because of the evaluation measure used. Since for this data set we do not have an
external correct partition as reference, the Adjusted Rand Index could not be used, so the
Normalized Hubert Γ statistic was chosen as the evaluation metric, which measures the cor-
relation between the cophenetic and proximity matrices. Because it is a simple correlation
of both matrices and the cophenetic matrix is constructed using the proximity matrix as in-
put, reasonable clustering algorithms will return good values for the statistic, even though the
original clusters may not be fully reconstructed.

Overall, our proposed dissimilarity measure is a step forward in modelling time series
autocorrelations, which are a useful indicator of the generating model, or equation, which
produced the time series. This is achieved by direct use of the Partial Autocorrelation Func-
tion (PACF), which computes how much and how far time series observations are related to
one another, as discussed in Section 5.2.1
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The limitations of the proposed measure are: 1) the determination of parameter τ ,
the maximum lag to compute the partial autocorrelations; 2) the choice of parameter δ, for
the subselection of the first partial autocorrelations; 3) partial autocorrelations depend on
Pearson’s r coefficient, which is limited to representing linear relationships.

We note that, in practice, if the desired regressive extension δ is known, then one
can simply set τ = δ and avoiding the computational effort to determine autocorrelations at
farther lags.

Other modeling possibilities do exist, such as fitting AR models, using a selection
criteria, e.g., Akaike Information Criteria (AIC) [28]. That, however, restricts the application
of the method to certain fitting models. A series that follows an ARIMA model, for example,
would not be adequately represented if the fitting models do not consider non-stationary
relations.

8 Conclusion

Our findings show that the choice of an adequate dissimilarity measure is crucial for
time series clustering. The popular distance functions, such as Euclidean, DTW, and Pearson-
based ones, completely disregard inherent autocorrelations present in series. While the choice
of a clustering algorithm is also an important decision, we claim that the selection of a dis-
similarity measure plays an even bigger role, as confirmed by our experiments. If there is
no clustering structure provided by the proximity matrix, then even the best clustering algo-
rithm is unable to find a correct data partition. In summary, we proposed a new dissimilarity
measure which takes into account series partial autocorrelations to overcome the main draw-
back found in the most popular ones. This research indicates that future endeavors in non-
parametric dissimilarity measures, capable of also dealing with nonlinear autocorrelations,
are promising research directions.
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