Towards Generating Richer Code by Binding Security Abstractions to BPMN Task Types

Julio Cesar Damasceno¹, Bruno Leonardo Barros Silva¹, Bruno Leonardo Barros Silva¹, Robson Wagner Albuquerque de Medeiros¹, Fernando Antonio Aires Lins¹, Nelson Souto Rosa¹, Paulo Romero Martins Maciel¹

Bryan Stephenson¹, Hamid Reza Motahari Nezhad², Jun Li², Caio Northfleet²

Abstract: This paper presents an approach for binding security requirements

to different BPMN task types to create secure executable business processes.

1 Introduction

Annotating conceptual models enables generating richer (sometimes executable) code from models. There is an increasing interest in incorporating security requirements into business process models encoded in BPMN (Business Process Modeling Notation) specifications. This paper presents an extension that allows the binding of security requirements to different BPMN task types.

2 Binding Security Abstractions to BPMN Task Types

A BPMN Task is an atomic activity included within a business process definition. BPMN includes eight different types of tasks: Service, Receive, Send, User, Script, Manual, Reference and None. Security requirements may be expressed and bound to these task types by using the following abstractions [1]: NF-Attribute that models non-functional characteristics such as confidentiality; NF-Action that models design decisions, algorithms, data structures, and configurations which implement security enforcement mechanisms to achieve an NF-Attribute; NF-Statement that models constraints defined on an NF-Attribute to guide decisions taken to implement an NF-Attribute. For example, NF-Statement "High Confidentiality" may require the implementation of the NF-Action UseCryptography

¹ HP Labs Palo Alto

[{]bryan.stephenson,hamid.motahari,jun.li@hp.com}

² HP Brazil

[{]caio.northfleet@hp.com}

choosing public key-based encryption algorithm. In this work, we define how the security abstractions may be bound to various Task types. The following table illustrates task types and how security abstractions are bound to them. The implementation of these bindings is in progress and partially implemented in a modelling tool demonstrated in [1].

Туре	Description	Binding
Service	It represents a service (web service or	NF-Actions may be assigned to input and output
	application). A task receives a	Hessages and processing, e.g., the NF-Action
	and a massage to mark the	that input/output massages must be anomited
	completion of the task.	prior to entering or leaving the task.
Receive	This task waits for a message to arrive	NF-Actions associated to Receive tasks are
	from an external participant (relative	applied to the input message, e.g., the NF-Action
	to the Business Process).	UseCryptography bound to a Receive task
		means that the input messages must be
		encrypted by the external participant.
Send	This task sends a message to an	NF-Actions apply to the sent message, e.g., the
	external participant (relative to the	NF-Action UseCryptography bound to a Send
	Business Process).	task means that the input sent message must be
		encrypted before being sent.
User	Task performed by a human with the	Bindings applied to Service tasks are applicable
	assistance of a software application.	to this task.
Script	Task executed by a business process	NF-Actions must be implemented by the engine,
	engine by interpreting a script.	e.g., the NF-Action UseCryptography bound to a
		Script task means that the engine must encrypt
		any data manipulated by the script.
Manual	Task performed without the aid of any	NF-Action may not be bound to this type of task
	business process execution engine or	as they are not computationally implemented.
	any application.	
Reference	Refers to another task with similar	NF-Actions binding is defined according to the
	behavior.	referenced Task type.
1		

3 Conclusion

In this paper, we show the application of using abstractions for security requirements to annotate elements of the BPMN conceptual model. We show that this enables generating richer code (e.g. WS-BPEL code) when service composition is modeled using BPMN.

Acknowledgement. This research is supported by Hewlett-Packard Brasil Ltda. using incentives of Brazilian Informatics Law (Law nº 8.248 of 1991).

4 References

 A. Souza et al. "Incorporating Security Requirements into Service Composition: From Modeling to Execution". In 7th International Joint Conference on Service Oriented Computing (ICSOC 2009). Stockholm, Sweden.