
Java Advanced Imaging API: A Tutorial
Rafael Santos1

Abstract: This tutorial shows how the Java language and its Java Advanced Ima-
ging (JAI) Application Program Interface (API) can be used to create applications for
image representation, processing and visualization. The Java language advantages are
its low cost, licensing independence and inter-platform portability. The JAI API ad-
vantages are its flexibility and variety of image processing operators.
The purpose of this tutorial is to present the basic concepts of the JAI API, including
several complete and verified code samples which implements simple image process-
ing and visualization operations. At the end of the tutorial the reader should be able
to implement his/her own algorithms using the Java language and the JAI API.

Keywords: Image processing, Algorithms, Java, Java Advanced Imaging.

1 Introduction

In spite of the existence of several image processing softwares with many image pro-
cessing functions, tailored for several different uses, there is often the need for implementa-
tion of specific algorithms which are not available on those softwares – for example, a user
may want to implement his/her own image classification or filtering algorithm or tweak some
already implemented algorithm parameters. Some of those softwares allow the development
of user-defined modules, often using the same API developed for the software itself. The
developer may be able to use those APIs to develop his/hew own routines, but often there is
an additional cost or licensing restrictions.

A royalty-free, portable, flexible alternative for the implementation of generic appli-
cations is the Java language [1]. For image processing and representation, the JAI (Java
Advanced Imaging) API (Application Program Interface) [2] can be used. Although the API
is not part of a full-featured image processing software, the existing functions and extension
possibilities allied to the low cost and ease of implementation makes this combination an
attractive option for image processing algorithms development.

This tutorial will present some concepts on the JAI API and give code samples and
short code snippets for image input and output, application of basic operators, image visual-
ization and image data manipulation. The tutorial will not present some details like installa-
tion and configuration issues or advanced operations such as network imaging. It is assumed

1Divisão de Sensoriamento Remoto – Instituto de Estudos Avançados – Centro Técnico Aeroespacial
santos@ieee.org

Java Advanced Imaging API: A Tutorial

that the reader already have a good knowledge of Java or other modern languages (C++,
Delphi) and basic image processing knowledge.

Instructions for installation the JAI libraries and running applications which use the
JAI classes can be found in [2, 3]. This tutorial assumes that the user will have access to
a complete JDK (Java Development Kit) installation (version 1.4 or later) with the JAI API
installed (version 1.1.2 or later).

2 Image data representation

Image processing algorithms usually require the manipulation of the image data (pix-
els). In this section the model used by JAI for image data storage and manipulation will be
presented, with the corresponding Java/JAI classes.

Images in JAI may be multidimensional (i.e. with several values associated to a sin-
gle pixel) and may have pixel with either integer or floating point values (altough there are
restrictions on the types of images which can be stored in disk). Pixels may be packed in
different ways or unpacked in the image data array. Different color models can be used. As
one may expect, in order to be able to represent a variety of image data, one must deal with a
variety of classes.

Before showing examples of those classes, the basic classes for iamge data represen-
tation will be shown. Some of those classes are abstract, concrete subclasses of those behave
on more or less the same way:

PlanarImage : Basic class for image representation in JAI, allows the representation of
images with more flexibility than the Java classBufferedImage . BothBuffered-
Image andPlanarImage uses several different classes for flexible image data rep-
resentation: its pixels are stored in an instance ofRaster which contains an in-
stance of a concrete subclass ofDataBuffer , packed accordingly to the rules de-
scriped by an instance of a concrete subclass ofSampleModel . An instance of
PlanarImage also have aColorModel associated to it, which contains an in-
stance ofColorSpace , which determines how a pixel’s value can be translated to
color values. Figure 1 shows how those classes are used to compose an instance of
PlanarImage .
A PlanarImage is read-only, i.e. it may be created and its pixels values may be read
in several different ways, but there are no methods that allow the modification of pixels
values.PlanarImage s may have the origin of the image in a position different from
the coordinate(0, 0), or even pixel coordinates with negative values.

TiledImage : A subclass ofPlanarImage , which can be used for readingand writing
image data.

94 RITA • Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

RenderedOp : Another subclass ofPlanarImage , which represents a node in arendered
imaging chain. A rendered imaging chain is a powerful and interesting concept of JAI
which allows the processing of an image to be specified as a series of steps (operators
and parameters) which are applied to one or more images.

PlanarImage
ColorModel Raster

SampleModelColorSpace

DataBuffer

Figure 1. PlanarImage structure (after [3])

Another interesting concept used in JAI aretiled images. Tiles can be considered as
subsets of the images which may be processed independently. Large images thus can be
processed in Java/JAI with reasonable performance, even through rendered imaging chains,
since there is no need to load the whole image data in memory at once. If the image is tiled,
all its tiles must have the same width and height. JAI allows different origins for the pixels
and for the tiles on an image, although there are few, if any, practical applications for this.

Figure 2 shows a simple tiled image, where the origin of the tiles coincides with the
origin of the image but with the tiles extended past the image edges (as it is often the case).
When a tile extends past the image edges, its contents are undefined. More information on
tiled images may be found in [4].

120 pixels
450 pixels

80
 p

ix
el

s

28
6

pi
xe

ls

Figure 2. A tiled image.

RITA • Volume XI • Número 1• 2004 95

Java Advanced Imaging API: A Tutorial

With the knowledge of which classes are used for image data representation, it is
relatively simple to create an image in-memory for storage or further processing.

Two different examples of creation of images will be presented, the first one will be
the creation of a grayscale image with a floating-point pixel data, and the second will be the
creation of a RGB image with integer pixel data. Both examples will use the following simple
steps:

1. Create the image data in an array in memory. This array must be an unidimensional
array, although for simplicity a multidimensional array can be created and flattened
later.

2. Create an instance of a concrete subclass ofDataBuffer , using one of its construc-
tors and the image data array.

3. Create an instance ofSampleModel with the same data type of theDataBuffer
and desired dimensions. A factory method of the classRasterFactory may be
used for this.

4. Create an instance ofColorModel compatible with the sample model being used.
The static methodPlanarImage.createColorModel may be used for this, us-
ing the sample model as an argument.

5. Create an instance ofWritableRaster using the sample model and the image data
array. The methodRasterFactory.createWritableRaster can be used for
this.

6. Create a writable image (instance ofTiledImage) using the sample model, color
model and dimensions.

7. Associate the instance ofRaster with the image using the methodsetData of the
classTiledImage .

8. Do something with the instance ofTiledImage , like saving it to disk, displaying or
processing it.

The code for those steps (as a complete Java application) that will create, as a result, a
floating-point one-banded (grayscale) image is shown in listing 1. Due to space constraints,
only the essential working code and comments will be shown in this tutorial. The reader may
find more complete code for this and other examples, with comments, on [5].

Listing 1: ClassCreateGrayImage .

1 package sibgrapi.tutorial;
2

3 import java.awt.Point ;
4 import java.awt.image.* ;
5 import javax.media.jai.* ;
6

7 public class CreateGrayImage
8 {
9 public static void main (String[] args)

96 RITA • Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

10 {
11 int width = 1024; int height = 1024; // Dimensions of the image.
12 float [] imageData = new float [width*height]; // Image data array.
13 int count = 0; // Auxiliary counter.
14 for (int w=0;w<width;w++) // Fill the array with a degradé pattern.
15 for (int h=0;h<height;h++)
16 imageData[count++] = (float)(Math.sqrt(w+h));
17 // Create a DataBuffer from the values on the image array.
18 javax.media.jai.DataBufferFloat dbuffer =
19 new javax.media.jai.DataBufferFloat(imageData,width*height);
20 // Create a float data sample model.
21 SampleModel sampleModel =
22 RasterFactory.createBandedSampleModel(DataBuffer.TYPE_FLOAT,
23 width,height,1);
24 // Create a compatible ColorModel.
25 ColorModel colorModel = PlanarImage.createColorModel(sampleModel);
26 // Create a WritableRaster.
27 Raster raster = RasterFactory.createWritableRaster(sampleModel,dbuffer,
28 new Point(0,0));
29 // Create a TiledImage using the float SampleModel.
30 TiledImage tiledImage = new TiledImage(0,0,width,height,0,0,
31 sampleModel,colorModel);
32 // Set the data of the tiled image to be the raster.
33 tiledImage.setData(raster);
34 // Save the image on a file.
35 JAI.create("filestore" ,tiledImage, "floatpattern.tif" , "TIFF");
36 }
37 }

Similar code for creation of a RGB image with a simple red and blue pattern is shown
in listing 2. Again, the same basic steps are used, although instances of different concrete
classes that inherit fromDataBuffer andSampleModel are used.

Listing 2: ClassCreateRGBImage .

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import java.awt.image.* ;
5 import javax.media.jai.* ;
6

7 public class CreateRGBImage
8 {
9 public static void main (String[] args)

10 {
11 int width = 121; int height = 121; // Dimensions of the image
12 byte [] data = new byte [width*height*3]; // Image data array.
13 int count = 0; // Temporary counter.
14 for (int w=0;w<width;w++) // Fill the array with a pattern.
15 for (int h=0;h<height;h++)
16 {
17 data[count+0] = (count % 2 == 0) ? (byte)255: (byte) 0;
18 data[count+1] = 0;

RITA • Volume XI • Número 1• 2004 97

Java Advanced Imaging API: A Tutorial

19 data[count+2] = (count % 2 == 0) ? (byte) 0: (byte)255;
20 count += 3;
21 }
22 // Create a Data Buffer from the values on the single image array.
23 DataBufferByte dbuffer = new DataBufferByte(data,width*height*3);
24 // Create an pixel interleaved data sample model.
25 SampleModel sampleModel =
26 RasterFactory.
27 createPixelInterleavedSampleModel(DataBuffer.TYPE_BYTE,
28 width,height,3);
29 // Create a compatible ColorModel.
30 ColorModel colorModel = PlanarImage.createColorModel(sampleModel);
31 // Create a WritableRaster.
32 Raster raster = RasterFactory.createWritableRaster(sampleModel,dbuffer,
33 new Point(0,0));
34 // Create a TiledImage using the SampleModel.
35 TiledImage tiledImage = new TiledImage(0,0,width,height,0,0,
36 sampleModel,colorModel);
37 // Set the data of the tiled image to be the raster.
38 tiledImage.setData(raster);
39 // Save the image on a file.
40 JAI.create("filestore" ,tiledImage, "rgbpattern.tif" , "TIFF");
41 }
42 }

In order to get information about an existing image, severalget methods from the
classesPlanarImage , SampleModel andColorModel can be used. Several of those
methods are demonstrated in the code on the listing 3, which is a complete Java application
which must get, as a command-line parameter, the file name of an existing image.

Listing 3: ClassImageInfo .

1 package sibgrapi.tutorial;
2

3 import java.awt.Transparency ;
4 import java.awt.image.* ;
5 import java.io.File ;
6 import javax.media.jai.* ;
7

8 public class ImageInfo
9 {

10 public static void main (String[] args)
11 {
12 // Open the image (using the name passed as a command line parameter)
13 PlanarImage pi = JAI.create("fileload" , args[0]);
14 // Get the image file size (non-JAI related).
15 File image = new File(args[0]);
16 System.out.println("Image file size: " +image.length()+ " bytes.");
17 // Show the image dimensions and coordinates.
18 System.out.print("Dimensions: ");
19 System.out.print(pi.getWidth()+ "x" +pi.getHeight()+ " pixels");
20 // Remember getMaxX and getMaxY return the coordinate of the next point!

98 RITA • Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

21 System.out.println(" (from " +pi.getMinX()+ "," +pi.getMinY()+ " to " +
22 (pi.getMaxX()-1)+ "," +(pi.getMaxY()-1)+ ")");
23 if ((pi.getNumXTiles() != 1)||(pi.getNumYTiles() != 1)) // Is it tiled?
24 {
25 // Tiles number, dimensions and coordinates.
26 System.out.print("Tiles: ");
27 System.out.print(pi.getTileWidth()+ "x" +pi.getTileHeight()+ " pixels" +
28 " (" +pi.getNumXTiles()+ "x" +pi.getNumYTiles()+ " tiles)");
29 System.out.print(" (from " +pi.getMinTileX()+ "," +pi.getMinTileY()+
30 " to " +pi.getMaxTileX()+ "," +pi.getMaxTileY()+ ")");
31 System.out.println(" offset: " +pi.getTileGridXOffset()+ "," +
32 pi.getTileGridXOffset());
33 }
34 // Display info about the SampleModel of the image.
35 SampleModel sm = pi.getSampleModel();
36 System.out.println("Number of bands: " +sm.getNumBands());
37 System.out.print("Data type: ");
38 switch (sm.getDataType())
39 {
40 case DataBuffer.TYPE_BYTE: System.out.println("byte"); break ;
41 case DataBuffer.TYPE_SHORT: System.out.println("short"); break ;
42 case DataBuffer.TYPE_USHORT: System.out.println("ushort"); break ;
43 case DataBuffer.TYPE_INT: System.out.println("int"); break ;
44 case DataBuffer.TYPE_FLOAT: System.out.println("float"); break ;
45 case DataBuffer.TYPE_DOUBLE: System.out.println("double"); break ;
46 case DataBuffer.TYPE_UNDEFINED:System.out.println("undefined"); break ;
47 }
48 // Display info about the ColorModel of the image.
49 ColorModel cm = pi.getColorModel();
50 if (cm != null)
51 {
52 System.out.println("Number of color components: " +
53 cm.getNumComponents());
54 System.out.println("Bits per pixel: " +cm.getPixelSize());
55 System.out.print("Transparency: ");
56 switch (cm.getTransparency())
57 {
58 case Transparency.OPAQUE: System.out.println("opaque"); break ;
59 case Transparency.BITMASK: System.out.println("bitmask"); break ;
60 case Transparency.TRANSLUCENT:
61 System.out.println("translucent"); break ;
62 }
63 }
64 else System.out.println("No color model.");
65 }
66 }

3 Simple JAI operators

The JAI API contains several image operators which can be applied with minimum
programming. Those operators follow the concept of a rendered imaging chain, where the
steps for the image processing are defined but will be carried only when needed (deferred

RITA • Volume XI • Número 1• 2004 99

Java Advanced Imaging API: A Tutorial

execution).

Those operations are specified in a simple way: first an instance ofParameterBlock
is created, which is basically a vector of data that will be used for the operation, then the
static methodcreate of the classJAI is executed. This method gets as an argument a
name for the operation and the instance ofParameterBlock and returns an instance of
RenderedOp which can be manipulated as aPlanarImage . Alternatively one can add
the original image in the instance ofParameterBlock as a parameter to itsaddSource
method. Other parameters are added to theParameterBlock with its add method. Other
forms of the method does not require aParameterBlock and accept other arguments.

One example of a JAI operator is the “filestore” operator, used in the code in the
listings 1 and 2 to store an instance ofPlanarImage (or of a subclass of it) in a file. The
call for theJAI.create method used as arguments the name of the operator, the instance
of PlanarImage , a file name and a string containing the desired image file name (“TIFF”,
“JPEG”, “PNG”, etc.).

Another example of operator, which does not use the instance ofParameterBlock
was already shown in listing 3: a call toJAI.create("fileload",imageName);
will load and return an image which file name is contained on the stringimageName. Other
operators and code snippets that illustrate its usage will be shown in this section. A list of
all operators can be found on the JAI API documentation [6], on the documentation for the
packagejavax.media.jai.operator .

The “invert” operator requires a simplePlanarImage as input, and can be executed
as shown in the code in listing 4, which shows how to read and invert an image.

Listing 4: Code for image inversion.

1 // Read the image. Assume args[0] points to its filename.
2 PlanarImage input = JAI.create("fileload" , args[0]);
3 // Invert the image.
4 PlanarImage output = JAI.create("invert" , input);

The “scale” operator scales one image giving a scaled version as a result. It optionally
may also translate the image. To use this operator, one need to create aParameterBlock
and add the original image, two floating point values corresponding to the X and Y scale
and another two floating point values corresponding to the translation in X and Y of the
images’ pixels. When scaling an image, interpolation of the pixels must be performed,
therefore one need also to add to the parameter block an instance of a concrete subclass
of javax.media.jai.Interpolation . The code in listing 5 shows one example of
usage of this operator.

1 float scale = 2.0f;
2 ParameterBlock pb = new ParameterBlock();

100 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

Listing 5: Code for image scaling.

3 pb.addSource(image);
4 pb.add(scale);
5 pb.add(scale);
6 pb.add(0.0f);
7 pb.add(0.0f);
8 pb.add(new InterpolationNearest());
9 PlanarImage scaledImage = JAI.create("scale" , pb);

The “rotate” operator rotates one image using an angle in radians. Similarly to the
“scale” operator, it also needs an interpolation method. In order to use this operator, one
must create aParameterBlock , add an image source to it, and add (in this order) the
rotation angle, the two coordinates for the center of the rotation and an instance of a concrete
subclass ofInterpolation . The code in listing 6 shows one example of usage of the
“rotate” operator, which rotates an image 45 degrees around its center.

Listing 6: Code for image rotation.

1 float angle = (float)Math.toRadians(45);
2 float centerX = image.getWidth()/2f;
3 float centerY = image.getHeight()/2f;
4 ParameterBlock pb = new ParameterBlock();
5 pb.addSource(image);
6 pb.add(centerX);
7 pb.add(centerY);
8 pb.add(angle);
9 pb.add(new InterpolationBilinear());

10 PlanarImage scaledImage = JAI.create("rotate" , pb);

Convolution can be easily done with JAI. The “convolve” operator performs convolu-
tion of an image with a kernel, which can be created as an instance of the classKernelJAI .
This instance is created with an array which represents the kernel values, then the instance of
KernelJAI may be used even without aParameterBlock . The code in listing 7 shows
how one can create a15 × 15 smoothing kernel and apply it to an input image, giving as a
result an output image. The kernel values must be normalized, i.e. they must sum up to one.

Listing 7: Code for image smoothing.

1 int kernelSize = 15;
2 float [] kernelMatrix = new float [kernelSize*kernelSize];
3 for (int k=0;k<kernelMatrix.length;k++)
4 kernelMatrix[k] = 1.0f/(kernelSize*kernelSize);
5 KernelJAI kernel = new KernelJAI(kernelSize,kernelSize,kernelMatrix);
6 PlanarImage output = JAI.create("convolve" , input, kernel);

RITA • Volume XI • Número 1• 2004 101

Java Advanced Imaging API: A Tutorial

As another example, the code in listing 8 shows how one can create and apply a
horizontal Sobel operator to an input image.

102 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

Listing 8: Code for Sobel edge detection in an image.

1 float [] kernelMatrix = { -1, -2, -1,
2 0, 0, 0,
3 1, 2, 1 };
4 KernelJAI kernel = new KernelJAI(3,3,kernelMatrix);
5 PlanarImage output = JAI.create("convolve" , input, kernel);

It is possible to use some operators to manipulate the whole bands in an image. For
example, one can select some bands of a multiband image to create another image. The
operator “bandselect” uses an input image and an array of integer band indexes to select
bands from that image and add them in the specified order in the output image. The code in
listing 9 shows how one can invert a RGB image by selecting the reverse order (BGR) of its
bands. Usage of aParameterBlock is not needed in this case.

Listing 9: Code for inverting a RGB image through band selection.

1 PlanarImage output = JAI.create("bandselect" ,input, new int [] {2,1,0});

Another band manipulation operator is the “bandcombine” operator, which uses sev-
eral image bands to combine them into a single multiband image. This method could be used
to create a RGB image from three separate red, green and blue images, for example. The code
snippet in listing 10 assumes that there is an array of image file names, read those images into
an array of instances ofPlanarImage s using the “fileload” operator, then add those im-
ages to an instance ofParameterBlock (in the same order they were read). Finally, the
“bandcombine” operator combine all images in theParameterBlock and stores the result
in a TIFF image through the “filestore” operator.

Listing 10: Code for creating a multiband image from several separated bands.

1 PlanarImage[] inputs = new PlanarImage[args.length];
2 for (int im=0;im<args.length;im++)
3 inputs[im] = JAI.create("fileload" , args[im]);
4 ParameterBlock pb = new ParameterBlock();
5 for (int im=0;im<args.length;im++)
6 pb.setSource(inputs[im], im);
7 PlanarImage result = JAI.create("bandmerge" ,pb, null);
8 JAI.create("filestore" ,result,"multiband.tiff", "TIFF");

Some other simple operators are “add”, “subtract”, “multiply” and “divide”, which
performs basic arithmetic operations on two images, giving a third as result. The code snipped
shown in listing 11 shows how two images (which are presumably already created or read
from files) can be added, subtracted, multiplied or divided depending on which button on an
user interface was clicked.

RITA • Volume XI • Número 1• 2004 103

Java Advanced Imaging API: A Tutorial

Listing 11: Code for performing arithmetic operations on two images.

1 ParameterBlock pb = new ParameterBlock();
2 pb.addSource(input1);
3 pb.addSource(input2);
4 if (e.getSource() == add)
5 output = JAI.create("add" , pb);
6 else if (e.getSource() == subtract)
7 output = JAI.create("subtract" , pb);
8 else if (e.getSource() == multiply)
9 output = JAI.create("multiply" , pb);

10 else if (e.getSource() == divide)
11 output = JAI.create("divide" , pb);

4 Image data access

Often there is the need to access individual pixel values from an image in order to
perform some operation on that image – classification algorithms, for example, often require
access to all pixels on an image for evaluation and classification.

One simple method that can be used to access pixels from an image is through the
use ofiterators. Iterators allow the access to the pixels on an image in a specific order. For
example, an instance ofRectIter scans the image column by column, from the top line
to the bottom line, updating automatically the scanned pixels’ coordinates and allowing the
access (reading only) for all pixels in a band or for a pixel in a particular band at the present
scan coordinate. Another iterator,RandomIter allows the direct access to a pixel using
user-specified X and Y coordinates.

Both iterators are actually interfaces, and opaque instances of classes that implement
those interfaces can be obtained through factory methods in classesRectIterFactory
andRandomIterFactory , respectively. The factory methods require two arguments: one
instance ofPlanarImage (which will be the image being processed) and one instance
of Rectangle , which will determine which rectangular subregion of the image will be
considered for processing. Ifnull is used instead of an instance ofRectangle , the whole
image will be considered for processing.

The code snippet in listing 12 shows how one can dump all pixels’ data values of an
image to the console. The code gets the image dimensions, creates an array suitable for being
filled with a pixel of the image (which may be a multiband image) and, iterating over all the
pixels on the image, get its values and print them. Note that the methodnextPixel must
be called to increase the coordinates for the pixels.

Listing 12: Accessing all pixels in an image (usingRectIter).

1 int width = pi.getWidth();
2 int height = pi.getHeight();

104 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

3 SampleModel sm = pi.getSampleModel();
4 int nbands = sm.getNumBands();
5 int [] pixel = new int [nbands];
6 RectIter iterator = RectIterFactory.create(pi, null);
7 for (int h=0;h<height;h++)
8 for (int w=0;w<width;w++)
9 {

10 iterator.getPixel(pixel);
11 System.out.print("at (" +w+"," +h+"): ");
12 for (int band=0;band<nbands;band++)
13 System.out.print(pixel[band]+ " ");
14 System.out.println();
15 iterator.nextPixel();
16 }

The code in listing 13 is similar to the one in listing 12, except that an instance of
RandomIter is created and used, so when the methodgetPixel is called, one must
provide X and Y coordinates to it.

Listing 13: Accessing all pixels in an image (usingRandomIter).

1 int width = pi.getWidth();
2 int height = pi.getHeight();
3 SampleModel sm = pi.getSampleModel();
4 int nbands = sm.getNumBands();
5 int [] pixel = new int [nbands];
6 RandomIter iterator = RandomIterFactory.create(pi, null);
7 for (int h=0;h<height;h++)
8 for (int w=0;w<width;w++)
9 {

10 iterator.getPixel(w,h,pixel);
11 System.out.print("at (" +w+"," +h+"): ");
12 for (int band=0;band<nbands;band++)
13 System.out.print(pixel[band]+ " ");
14 System.out.println();
15 }

Although pixel data acessing with iterators is quite simple and straightforward, it
causes some overhead on the performance of the applications, since, for each pixel, there
must be some method calls (with image boundary verification). A faster pixel data acessing
method is through the image raster.

As seen on section 2, the image pixels are stored in aRaster , which encapsulates
both aDataBuffer and aSampleModel . The developer does not need to concern how
the pixels are packed inside theRaster , its getPixel method and variants will get the
pixels as a data array, while itsgetSample method and variants will get a single data point
(band of a pixel) from the image data. By getting a raster from the image and a data region
from it, there will be fewer method calls and less overhead, so the application may perform

RITA • Volume XI • Número 1• 2004 105

Java Advanced Imaging API: A Tutorial

better. On the other hand, since processing will be done by image chunks, more memory may
be required, depending on the size of the region used for processing.

The code snipped in listing 14 shows how one can access all pixels in an image through
the image’sRaster . The code is similar to the shown in listings 12 and 13, except that an
instance ofRaster is created by calling the methodgetData on classPlanarImage ,
then the methodgetPixels of the instance ofRaster is called to get all the pixels of
the image in a suitable structure, which must have the required dimensions. The method
getPixels get as parameters the coordinates of the upper left pixel location and its width
and height, and a reference to the array which will get the data. In the example, the whole
image was used as data source. It must be pointed that since the array which will get the data
must be unidimensional, proper tracking of the pixels and band coordinates must be done.

Listing 14: Accessing all pixels in an image (usingRaster.getPixels).

1 int width = pi.getWidth();
2 int height = pi.getHeight();
3 SampleModel sm = pi.getSampleModel();
4 int nbands = sm.getNumBands();
5 Raster inputRaster = pi.getData();
6 int [] pixels = new int [nbands*width*height];
7 inputRaster.getPixels(0,0,width,height,pixels);
8 int offset;
9 for (int h=0;h<height;h++)

10 for (int w=0;w<width;w++)
11 {
12 offset = h*width*nbands+w*nbands;
13 System.out.print("at (" +w+"," +h+"): ");
14 for (int band=0;band<nbands;band++)
15 System.out.print(pixels[offset+band]+ " ");
16 System.out.println();
17 }

PlanarImage s andRaster s are read-only, but it is easy to create an application
that process the images’ pixels and store them for further use. From the instance ofRaster
one can create an instance ofWritableRaster with the same structure (but without the
pixels’ values) calling the methodRaster.createCompatibleWritableRaster .
The pixels’ values can be obtained as shown in listing 14. After processing the pixels’ values
through the data array, the array can be stored again on theWritableRaster through its
setPixels method, which arguments are the same as the used inRaster.getPixels .

A Raster or WritableRaster cannot be inserted again on aPlanarImage ,
but it is easy to create aTiledImage calling one of its constructors, which uses as pa-
rameters an instance of an already existingPlanarImage and the desired tiles width and
height. TheTiledImage will have the same dimensions and other features as the original

106 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

PlanarImage and itssetData method, with gets as an argument an instance ofRaster
or WritableRaster can be used to set its data. ThisTiledImage then can be further
processed or stored.

Listing 15 shows the whole process. That listing shows a simple application where
all pixels with values equal to zero are changed to 255. The input to the code is aPlanar-
Image , and its output is aTiledImage with the original values changed.

Listing 15: Accessing all pixels in an image (for reading and writing).

1 int width = pi.getWidth();
2 int height = pi.getHeight();
3 SampleModel sm = pi.getSampleModel();
4 int nbands = sm.getNumBands();
5 Raster inputRaster = pi.getData();
6 WritableRaster outputRaster = inputRaster.createCompatibleWritableRaster();
7 int [] pixels = new int [nbands*width*height];
8 inputRaster.getPixels(0,0,width,height,pixels);
9 int offset;

10 for (int h=0;h<height;h++)
11 for (int w=0;w<width;w++)
12 {
13 offset = h*width*nbands+w*nbands;
14 for (int band=0;band<nbands;band++)
15 if (pixels[offset+band] == 0) pixels[offset+band] = 255;
16 }
17 outputRaster.setPixels(0,0,width,height,pixels);
18 TiledImage ti = new TiledImage(pi,1,1);
19 ti.setData(outputRaster);

It is also possible to use writable iterators – for example, an instance ofWritable-
RandomIter can be created through the methodRandomIterFactory.createWri-
table and passing to this method an instance ofTiledImage and an instance ofRectan-
gle to set the bounds for the iterator ornull to use the whole image. A writable iterator
can be used in a similar way as a read-only iterator. The writable iterator will set the data
directly on the output image, through itssetPixel or setSample methods.

5 Simple visualization

Visualization is an important step on an image processing application. Although it is
possible to do read an image, process it and store the results on disk and use external appli-
cations to view those results, there are certain types of images which can be processed and
stored but not easily viewed with generic applications – floating-point images and multiband
images, for example. It may also more interesting to do the processing and visualization on a
single Java application instead of relying on external applications.

RITA • Volume XI • Número 1• 2004 107

Java Advanced Imaging API: A Tutorial

The JAI API provides a simple but extensible component for image display, imple-
mented by the classDisplayJAI . This component inherits fromJPanel and may be used
as any other Java graphical component. This component can be used as-is or extended for
different purposes.

One simple example is shown in listing 16. This complete Java application dis-
plays the image which file name is passed as a command line argument. An instance of
DisplayJAI is created, using as argument for its constructor an instance ofPlanarImage
(the image on aDisplayJAI can be changed later through itsset method). The instance
of DisplayJAI is associated with aJScrollPane so images larger than the screen can
be viewed through scrolling.

Listing 16: Simple usage of theDisplayJAI component.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import javax.media.jai.* ;
5 import javax.swing.* ;
6 import com.sun.media.jai.widget.DisplayJAI ;
7

8 public class DisplayJAIExample
9 {

10 public static void main (String[] args)
11 {
12 // Load the image which file name was passed as the first argument to
13 // the application.
14 PlanarImage image = JAI.create("fileload" , args[0]);
15 // Get some information about the image
16 String imageInfo =
17 "Dimensions: " +image.getWidth()+ "x" +image.getHeight()+
18 " Bands:" +image.getNumBands();
19 // Create a frame for display.
20 JFrame frame = new JFrame();
21 frame.setTitle("DisplayJAI: " +args[0]);
22 // Get the JFrame’s ContentPane.
23 Container contentPane = frame.getContentPane();
24 contentPane.setLayout(new BorderLayout());
25 // Create an instance of DisplayJAI.
26 DisplayJAI dj = new DisplayJAI(image);
27 // Add to the JFrame’s ContentPane an instance of JScrollPane
28 // containing the DisplayJAI instance.
29 contentPane.add(new JScrollPane(dj),BorderLayout.CENTER);
30 // Add a text label with the image information.
31 contentPane.add(new JLabel(imageInfo),BorderLayout.SOUTH);
32 // Set the closing operation so the application is finished.
33 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
34 frame.setSize(400,200); // adjust the frame size.
35 frame.setVisible(true); // show the frame.
36 }
37 }

108 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

A screenshot of the application in listing 16 is shown in figure 3. The application
assumes that the image can be displayed without problems, but will yield an exception if
images with more than three bands are used.

Figure 3. Screenshot of theDisplayJAI usage example application (listing 16).

5.1 Visualization with a surrogate image

TheDisplayJAI component is able to display images which data type is not integer
(e.g. floating point images) but its results are undefined – there is no explicit or controlable
conversion of the image data. In this section, an example of extension of theDisplayJAI
component will be shown. This example has two interesting points: it uses asurrogateimage
for display, which will be created from the original image data; and it also allows some basic
user interaction, so the user can see the original value of the image pixel under the mouse
cursor.

The component will be tailored for the displaying of digital elevation model (DEM)
images, which are one-banded floating-point images, where the pixels are not a measure of
a visible feature of the image but the elevation over the ocean level. In order to create a
surrogate image which will visually represent the DEM, one must create a normalized and
reformatted (casted) version of the original floating point image. The surrogate image pixels’
values will be on the range[0, 255], normalized considering the minimum and maximum
values of the DEM – in other words, all pixels on the surrogate image will be calculated
as the value of the corresponding DEM pixel multiplied by255/(max − min) and added
to min, wheremax is the maximum DEM value andmin the minimum DEM value. The
surrogate image data type will also be set to byte.

In order to create the surrogate image with these rules, three JAI operators will be
used. Those operators were not shown in section 3, therefore their description and usage
will be presented now. The first operator is the “extrema” operator, which does not use any
other parameter except for an input image. After this operator is applied, the user can call the
methodgetProperty of the resultingRenderedOp using “maximum” or “minimum” as

RITA • Volume XI • Número 1• 2004 109

Java Advanced Imaging API: A Tutorial

arguments to get arrays of double values corresponding to the maximum and minimum pixel
values per band. On this example, the DEM image is considered to have only one band.

The second operator that will be used in this example is the “rescale” operator, which
uses as parameters (using aParameterBlock) an input image, an array of double values
for multiplication of the input image pixels and another array of double values for addition
to the image pixels. If the dimension of those arrays is the same as the number of bands
on the image, the multiplication and addition will be done on a per band basis, otherwise
only the first value on the arrays will be used. The resulting image pixels are calculated as
output = input × m + a wherem anda are the arrays for multiplication and addition,
respectively.

The third operator used to create the surrogate image is the “format” operator, which
get as parameters the input image and one of the constantsTYPE_BYTE, TYPE_SHORT,
TYPE_USHORT, TYPE_INT, TYPE_FLOATor TYPE_DOUBLE, which are defined in the
classDataBuffer . The resulting image data will be casted to the type corresponding to the
DataBuffer constant.

Listing 17 shows the code for the modified component. This component (Display-
DEM) creates the surrogate image on its constructor, using the original image and the de-
scribed steps for normalization and reformatting, also creating aRandomIter to obtain
the original image pixels values. Part of the code on listing 17 allows the component to
store the image data under the current mouse position, and to export those values as a
StringBuffer .

Listing 17: Code for theDisplayDEM component.

1 package sibgrapi.tutorial;
2

3 import java.awt.event.* ;
4 import java.awt.image.* ;
5 import java.awt.image.renderable.* ;
6 import javax.media.jai.* ;
7 import javax.media.jai.iterator.* ;
8 import com.sun.media.jai.widget.DisplayJAI ;
9

10 public class DisplayDEM extends DisplayJAI implements MouseMotionListener
11 {
12 protected StringBuffer pixelInfo; // Pixel information (formatted as a
13 // StringBuffer).
14 protected double [] dpixel; // Pixel information as an array of doubles.
15 protected RandomIter readIterator; // a RandomIter that allow us to get
16 // the data of a single pixel.
17 protected PlanarImage surrogateImage; // The surrogate byte image.
18 protected int width,height; // Dimensions of the image
19 protected double minValue,maxValue; // Range of the image values.
20

110 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

21 /**
22 * The constructor of the class, which creates the data structures and
23 * surrogate image.
24 */
25 public DisplayDEM(RenderedImage image)
26 {
27 readIterator = RandomIterFactory.create(image, null);
28 // Get some facts about the image
29 width = image.getWidth();
30 height = image.getHeight();
31 dpixel = new double [image.getSampleModel().getNumBands()];
32 // We need to know the extrema of the image to create the surrogate
33 // image. Let’s use the extrema operator to get them.
34 ParameterBlock pbMaxMin = new ParameterBlock();
35 pbMaxMin.addSource(image);
36 RenderedOp extrema = JAI.create("extrema" , pbMaxMin);
37 double [] allMins = (double [])extrema.getProperty("minimum");
38 double [] allMaxs = (double [])extrema.getProperty("maximum");
39 minValue = allMins[0]; // Assume that the image is one-banded.
40 maxValue = allMaxs[0];
41 // Rescale the image with the parameters
42 double [] multiplyByThis = new double [1];
43 multiplyByThis[0] = 255./(maxValue-minValue);
44 double [] addThis = new double [1];
45 addThis[0] = minValue;
46 // Now we can rescale the pixels gray levels:
47 ParameterBlock pbRescale = new ParameterBlock();
48 pbRescale.add(multiplyByThis);
49 pbRescale.add(addThis);
50 pbRescale.addSource(image);
51 surrogateImage = (PlanarImage)JAI.create("rescale" , pbRescale);
52 // Let’s convert the data type for displaying.
53 ParameterBlock pbConvert = new ParameterBlock();
54 pbConvert.addSource(surrogateImage);
55 pbConvert.add(DataBuffer.TYPE_BYTE);
56 surrogateImage = JAI.create("format" , pbConvert);
57 set(surrogateImage);
58 // Create the StringBuffer instance for the pixel information.
59 pixelInfo = new StringBuffer(50);
60 addMouseMotionListener(this); // Registers the mouse motion listener.
61 }
62

63 // This method is here just to satisfy the MouseMotionListener interface.
64 public void mouseDragged(MouseEvent e) { }
65

66 // This method will be called when the mouse is moved over the image.
67 public void mouseMoved(MouseEvent me)
68 {
69 pixelInfo.setLength(0); // Clear the StringBuffer
70 int x = me.getX(); // Get the mouse coordinates.
71 int y = me.getY();
72 if ((x >= width) || (y >= height)) // Avoid exceptions, consider only
73 { // pixels within image bounds.
74 pixelInfo.append("No data!");
75 return ;
76 }

RITA • Volume XI • Número 1• 2004 111

Java Advanced Imaging API: A Tutorial

77 pixelInfo.append("(DEM data) " +x+"," +y+": ");
78 readIterator.getPixel(x,y,dpixel); // Read the original pixel value.
79 pixelInfo.append(dpixel[0]); // Append to the StringBuffer.
80 } // end of method mouseMoved
81

82 // Allows other classes to access the pixel info string.
83 public String getPixelInfo()
84 {
85 return pixelInfo.toString();
86 }
87 }

The section of code which uses the “extrema” operator is between lines 34 and 40 of
the code in listing 17. Usage of the “rescale” operator is shown between lines 42 and 51, and
usage of the “format” operator is between lines 53 and 56.

TheDisplayDEM component can be used in any Java application with a graphical
user interface. This application may or not use the original image pixel information that can
be obtained through theDisplayDEM component. One example of application is shown in
listing 18 – it is a simple application, which uses the component with aJLabel to show the
original image value for the pixel under the mouse cursor.

Listing 18: Application which uses theDisplayDEM component.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import java.awt.event.* ;
5 import javax.media.jai.* ;
6 import javax.swing.* ;
7

8 public class DisplayDEMApp extends JFrame implements MouseMotionListener
9 {

10 private DisplayDEM dd; // An instance of the DisplayDEM component.
11 private JLabel label; // Label to display information about the image.
12

13 public DisplayDEMApp(PlanarImage image)
14 {
15 setTitle("Move the mouse over the image !");
16 getContentPane().setLayout(new BorderLayout());
17 dd = new DisplayDEM(image); // Create the component.
18 getContentPane().add(new JScrollPane(dd),BorderLayout.CENTER);
19 label = new JLabel("---"); // Create the label.
20 getContentPane().add(label,BorderLayout.SOUTH);
21 dd.addMouseMotionListener(this); // Register mouse events.
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 setSize(400,200);
24 setVisible(true);
25 }
26

112 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

27 // This method is here just to satisfy the MouseMotionListener interface.
28 public void mouseDragged(MouseEvent e) { }
29

30 // This method will be executed when the mouse is moved over the
31 // application.
32 public void mouseMoved(MouseEvent e)
33 {
34 label.setText(dd.getPixelInfo()); // Update the label with the
35 // DisplayDEM instance info.
36 }
37

38 public static void main (String[] args)
39 {
40 PlanarImage image = JAI.create("fileload" , args[0]);
41 new DisplayDEMApp(image);
42 }
43 }

The figure 4 shows a screenshot of theDisplayDEMApp application (listing 18).
The the bottom part of the application shows the image coordinates and original DEM value
under the mouse cursor.

Figure 4. Screenshot of theDisplayDEMApp application (listing 18).

5.2 Visualization of images with annotations

Another frequent task in image processing applications is the display of an image
with some kind of annotations over it – markers on the image, text, delimiters for regions of
interest, etc. In this section a more complete set of classes will be described that allow the
non-interactive creation of generic annotations and the display over images, using another
extension of theDisplayJAI class.

In order to give a more complete and extensible example, an abstract class which
encapsulates a drawable annotation is first devised. The classDrawableAnnotation is
shown in listing 19, and simply declares an abstractpaint method and aColor field, with
a set and aget method for this field. Concrete classes that inherit from theDrawable-

RITA • Volume XI • Número 1• 2004 113

Java Advanced Imaging API: A Tutorial

Annotation class must implement thepaint method, which will draw the intended an-
notation using an instance ofGraphics2D as the drawing context.

Listing 19: Abstract class that encapsulates a drawable annotation.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4

5 public abstract class DrawableAnnotation
6 {
7 private Color color;
8

9 public abstract void paint(Graphics2D g2d);
10

11 public void setColor(Color color)
12 {
13 this .color = color;
14 }
15

16 public Color getColor()
17 {
18 return color;
19 }
20 }

A concrete implementation of the drawable annotation class is shown in listing 20.
That class allows the drawing of a diamond-shaped annotation, using as parameters for its
constructor a central point for the annotation and the diamond-shaped width and height in
pixels and a pen width (to allow the creation of annotations which will be drawn with different
pen widths).

Listing 20: Class that encapsulates a diamond-shaped annotation.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import java.awt.geom.* ;
5

6 public class DiamondAnnotation extends DrawableAnnotation
7 {
8 private Point2D center; // Annotation center point.
9 private double width; // Width of diamond annotation.

10 private double height; // Height of diamond annotation.
11 private BasicStroke stroke; // "Pen" used for drawing.
12

13 // Constructor for the class.
14 public DiamondAnnotation(Point2D c, double w, double h, float pw)
15 {

114 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

16 center = c;
17 width = w;
18 height = h;
19 stroke = new BasicStroke(pw);
20 }
21

22 // Concrete implementation of the paint method.
23 public void paint(Graphics2D g2d)
24 {
25 int x = (int)center.getX();
26 int y = (int)center.getY();
27 int xmin = (int)(x-width/2);
28 int xmax = (int)(x+width/2);
29 int ymin = (int)(y-height/2);
30 int ymax = (int)(y+height/2);
31 g2d.setStroke(stroke);
32 g2d.setColor(getColor());
33 g2d.drawLine(x,ymin,xmin,y);
34 g2d.drawLine(xmin,y,x,ymax);
35 g2d.drawLine(x,ymax,xmax,y);
36 g2d.drawLine(xmax,y,x,ymin);
37 }
38 }

The main class in this section is the class that inherits fromDisplayJAI and can
display an image and draw annotations (instances of classes that inherit fromDrawable-
Annotation) over it. Annotations are stored as a list, and the class provides a method for
adding annotations to the list.

This class overrides thepaint method of theDisplayJAI class so after the image
is painted (through a call tosuper.paint) all instances of annotations on the list have
theirpaint method executed, using the same graphic context used to draw the image.

The code for the class that inherits fromDisplayJAI (DisplayJAIWithAnno-
tations) is shown in listing 21.

Listing 21: Extension of theDisplayJAI class that draws annotations over the image.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import java.awt.image.RenderedImage ;
5 import java.util.ArrayList ;
6 import com.sun.media.jai.widget.DisplayJAI ;
7

8 public class DisplayJAIWithAnnotations extends DisplayJAI
9 {

10 protected ArrayList annotations; // List of annotations that will be
11 // (non-interactively) drawn.
12

RITA • Volume XI • Número 1• 2004 115

Java Advanced Imaging API: A Tutorial

13 // Constructor for the class.
14 public DisplayJAIWithAnnotations(RenderedImage image)
15 {
16 super (image); // calls the constructor for DisplayJAI
17 annotations = new ArrayList(); // List that will held the drawings.
18 }
19

20 // This method paints the component and all its annotations.
21 public void paint(Graphics g)
22 {
23 super .paint(g);
24 Graphics2D g2d = (Graphics2D)g;
25 for (int a=0;a<annotations.size();a++) // For each annotation.
26 {
27 DrawableAnnotation element = (DrawableAnnotation)annotations.get(a);
28 element.paint(g2d);
29 }
30 }
31

32 // Add an annotation (instance of any class that inherits from
33 // DrawableAnnotation to the list of annotations which will be drawn.
34 public void addAnnotation(DrawableAnnotation a)
35 {
36 annotations.add(a);
37 }
38 }

Finally, a Java application which uses theDisplayJAIWithAnnotations class
is shown in listing 22. That application creates three instances ofDiamondAnnotation
and adds them to an instance ofDisplayJAIWithAnnotations , which will be painted
inside aJFrame .

Listing 22: Application which uses theDisplayJAIWithAnnotations component.

1 package sibgrapi.tutorial;
2

3 import java.awt.Color ;
4 import java.awt.geom.Point2D ;
5 import javax.media.jai.* ;
6 import javax.swing.* ;
7

8 public class DisplayJAIWithAnnotationsApp
9 {

10 public static void main (String[] args)
11 {
12 PlanarImage image = JAI.create("fileload" , "datasets/bloodimg02.jpg");
13 DisplayJAIWithAnnotations display =
14 new DisplayJAIWithAnnotations(image);
15 // Create three diamond-shaped annotations.
16 DiamondAnnotation d1 =
17 new DiamondAnnotation(new Point2D.Double(229,55),20,20,2);
18 d1.setColor(Color.BLACK);

116 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

19 DiamondAnnotation d2 =
20 new DiamondAnnotation(new Point2D.Double(249,84),20,20,3);
21 d2.setColor(Color.BLACK);
22 DiamondAnnotation d3 =
23 new DiamondAnnotation(new Point2D.Double(303,33),35,35,5);
24 d3.setColor(Color.GRAY);
25 // Add the annotations to the instance of DisplayJAIWithAnnotations.
26 display.addAnnotation(d1);
27 display.addAnnotation(d2);
28 display.addAnnotation(d3);
29 // Create a new Frame and set the DisplayJAIWithAnnotations.
30 JFrame frame = new JFrame();
31 frame.setTitle("Annotations over an image");
32 frame.getContentPane().add(new JScrollPane(display));
33 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
34 frame.setSize(500,200); // Set the frame size.
35 frame.setVisible(true);
36 }
37 }

A screenshot of theDisplayJAIWithAnnotationsApp application (listing 22)
is shown in figure 5.

Figure 5. Screenshot of theDisplayJAIWithAnnotationsApp application
(listing 22).

6 Complete Example: A Fuzzy C-Means Implementation

As a final example on this tutorial, let’s see a complete implementation of the Fuzzy
C-Means (FCM) clustering algorithm [7]. This algorithm iteractively cluster an image using
fuzzy membership values instead of assigning each pixel to one and only one cluster.

The implementation is divided in two classes, one class which encapsulates the algo-
rithm and which can perform the FCM in an image with any number of bands and another
class which is an application that will call the methods in the first class.

RITA • Volume XI • Número 1• 2004 117

Java Advanced Imaging API: A Tutorial

The first class is shown in listing 23. This class has a constructor to get information
about the image and set the several data structure required for the execution of the FCM
algorithm, arun method which executes the algorithm itself (calling several private helper
methods) and agetRankedImage method which get a ranked clustering result. The use
of the rank concept allows the user to get the best clustering result, i.e. in which each pixel is
assigned to the cluster in which it had the largest membership function (usingrank = 0), or
the second best, i.e. in which each pixel is assigned to the cluster in which it had the second
largest membership function (usingrank = 1) and so on – this allows the exploration of
clustering alternatives for cluster analysis.

Listing 23: TheFuzzyCMeansClusteringTask class.

1 package sibgrapi.tutorial;
2

3 import java.awt.* ;
4 import java.awt.image.* ;
5 import javax.media.jai.* ;
6

7 public class FuzzyCMeansClusteringTask
8 {
9 private PlanarImage pInput; // A copy of the input image.

10 private int width,height,numBands; // The input image dimensions.
11 private int maxIterations,numClusters; // Some clustering parameters.
12 // FCM additional parameters and membership function values.
13 private float fuzziness; // "m"
14 private float [][][] membership; // Membership for pixels and clusters.
15 private int iteration; // Iteration counter (global).
16 private double j = Float.MAX_VALUE; // A metric of clustering "quality".
17 private double epsilon; // The minimum change between iterations.
18 private float [][] clusterCenters; // Cluster centers.
19 private int [] inputData; // All the input data (pixels).
20 private float [] aPixel; // A single pixel.
21 private short [][] outputData; // Output data (cluster indexes).
22

23 // Constructor for the class, which sets some algorithm parameters.
24 public FuzzyCMeansClusteringTask(PlanarImage pInput,
25 int numClusters, int maxIterations,
26 float fuzziness, double epsilon)
27 {
28 this .pInput = pInput;
29 width = pInput.getWidth(); // Get the image dimensions.
30 height = pInput.getHeight();
31 numBands = pInput.getSampleModel().getNumBands();
32 this .numClusters = numClusters; // Set some clustering parameters.
33 this .maxIterations = maxIterations;
34 this .fuzziness = fuzziness;
35 this .epsilon = epsilon;
36 iteration = 0;
37 // Allocate memory for the data arrays.
38 clusterCenters = new float [numClusters][numBands]; // Cluster centers.
39 membership = new float [width][height][numClusters]; // Memberships.

118 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

40 aPixel = new float [numBands]; // A single pixel.
41 outputData = new short [width][height]; // Cluster indexes.
42 // Gets the raster and all pixel values for the input image.
43 Raster raster = pInput.getData();
44 inputData = new int [width*height*numBands];
45 raster.getPixels(0,0,width,height,inputData);
46 // Fill the membership function (MF) table with random values. The sum
47 // of memberships for a pixel will be 1, and no MF values will be zero.
48 for (int h=0;h<height;h++)
49 for (int w=0;w<width;w++)
50 {
51 float sum = 0f;
52 for (int c=0;c<numClusters;c++)
53 {
54 membership[w][h][c] = 0.01f+(float)Math.random();
55 sum += membership[w][h][c];
56 }
57 for (int c=0;c<numClusters;c++) membership[w][h][c] /= sum;
58 }
59 }
60

61 // This method performs the bulk of the processing. It runs the classic
62 // Fuzzy C-Means clustering algorithm:
63 // 1 - Calculate the cluster centers.
64 // 2 - Update the membership function.
65 // 3 - Calculate statistics and repeat from 1 if needed.
66 public void run()
67 {
68 double lastJ; // The last "j" value (objective function).
69 lastJ = calculateObjectiveFunction(); // Calculate objective function.
70 // Do all required iterations (until the clustering converges)
71 for (iteration=0;iteration<maxIterations;iteration++)
72 {
73 calculateClusterCentersFromMFs(); // Calculate cluster centers.
74 calculateMFsFromClusterCenters(); // Calculate MFs.
75 j = calculateObjectiveFunction(); // Recalculate J.
76 if (Math.abs(lastJ-j) < epsilon) break ; // Is it small enough?
77 lastJ = j;
78 }
79 }
80

81 // Calculates the cluster centers from the membership functions.
82 private void calculateClusterCentersFromMFs()
83 {
84 float top,bottom; // Parts of the equation.
85 // For each band and cluster...
86 for (int b=0;b<numBands;b++)
87 for (int c=0;c<numClusters;c++)
88 {
89 // For all data points calculate top and bottom parts of equation.
90 top = bottom = 0;
91 for (int h=0;h<height;h++)
92 for (int w=0;w<width;w++)
93 {
94 int index = (h*width+w)*numBands;
95 top += Math.pow(membership[w][h][c],fuzziness)*

RITA • Volume XI • Número 1• 2004 119

Java Advanced Imaging API: A Tutorial

96 inputData[index+b];
97 bottom += Math.pow(membership[w][h][c],fuzziness);
98 }
99 clusterCenters[c][b] = top/bottom; // Calculate the cluster center.

100 }
101 }
102

103 // Calculates the membership functions from the cluster centers.
104 private void calculateMFsFromClusterCenters()
105 {
106 float sumTerms;
107 // For each cluster and data point...
108 for (int c=0;c<numClusters;c++)
109 for (int h=0;h<height;h++)
110 for (int w=0;w<width;w++)
111 {
112 // Get a pixel (as a single array).
113 int index = (h*width+w)*numBands;
114 for (int b=0;b<numBands;b++) aPixel[b] = inputData[index+b];
115 // Distance of this data point to the cluster being read.
116 float top = calcDistance(aPixel,clusterCenters[c]);
117 // Sum of distances from this data point to all clusters.
118 sumTerms = 0f;
119 for (int ck=0;ck<numClusters;ck++)
120 {
121 float thisDistance = calcDistance(aPixel,clusterCenters[ck]);
122 sumTerms += Math.pow(top/thisDistance,(2f/(fuzziness-1f)));
123 }
124 // Then the MF can be calculated as...
125 membership[w][h][c] = (float)(1f/sumTerms);
126 }
127 }
128

129 // Calculates the objective function ("j") (quality of the clustering).
130 private double calculateObjectiveFunction()
131 {
132 double j = 0;
133 // For all data values and clusters...
134 for (int h=0;h<height;h++)
135 for (int w=0;w<width;w++)
136 for (int c=0;c<numClusters;c++)
137 {
138 // Get the current pixel data.
139 int index = (h*width+w)*numBands;
140 for (int b=0;b<numBands;b++) aPixel[b] = inputData[index+b];
141 // Calculate the distance between a pixel and a cluster center.
142 float distancePixelToCluster =
143 calcDistance(aPixel,clusterCenters[c]);
144 j += distancePixelToCluster*
145 Math.pow(membership[w][h][c],fuzziness);
146 }
147 return j;
148 }
149

150 // Calculates the Euclidean distance between two N-dimensional vectors.
151 private float calcDistance(float [] a1, float [] a2)

120 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

152 {
153 float distance = 0f;
154 for (int e=0;e<a1.length;e++) distance += (a1[e]-a2[e])*(a1[e]-a2[e]);
155 return (float)Math.sqrt(distance);
156 }
157

158 // This method will return a rank image, i.e. an image which pixels are
159 // the cluster centers of the Nth best choice for the classification.
160 public TiledImage getRankedImage(int rank)
161 {
162 // Create a SampleModel with the same dimensions as the input image.
163 SampleModel sampleModel =
164 RasterFactory.createBandedSampleModel(DataBuffer.TYPE_INT,
165 width,height,numBands);
166 // Create a WritableRaster using that sample model.
167 WritableRaster raster =
168 RasterFactory.createWritableRaster(sampleModel, new Point(0,0));
169 // A pixel array will contain all bands for a specific x,y.
170 int [] pixelArray = new int [numBands];
171 // For all pixels in the image...
172 for (int h=0;h<height;h++)
173 for (int w=0;w<width;w++)
174 {
175 // Get the class (cluster center) with the specified rank.
176 int aCluster = getRankedIndex(membership[w][h],rank);
177 // Fill the array with that cluster center.
178 for (int band=0;band<numBands;band++)
179 pixelArray[band] = (int)clusterCenters[aCluster][band];
180 raster.setPixel(w,h,pixelArray); // Put it on the raster.
181 }
182 TiledImage pOutput = new TiledImage(pInput,1,1); // Create an image.
183 pOutput.setData(raster); // Set the raster on the output image.
184 return pOutput;
185 }
186

187 // This method returns the ranked index of a cluster from an array
188 // containing the membership functions.
189 private int getRankedIndex(float [] data, int rank)
190 {
191 int [] indexes = new int [data.length]; // Temporary arrays for the
192 float [] tempData = new float [data.length]; // indexes and data.
193 for (int i=0;i<indexes.length;i++) // Fill those arrays.
194 {
195 indexes[i] = i; tempData[i] = data[i];
196 }
197 // Sort both arrays together, using data as the sorting key.
198 for (int i=0;i<indexes.length-1;i++)
199 for (int j=i;j<indexes.length;j++)
200 {
201 if (tempData[i] < tempData[j])
202 {
203 int tempI= indexes[i];
204 indexes[i] = indexes[j];
205 indexes[j] = tempI;
206 float tempD = tempData[i];
207 tempData[i] = tempData[j];

RITA • Volume XI • Número 1• 2004 121

Java Advanced Imaging API: A Tutorial

208 tempData[j] = tempD;
209 }
210 }
211 return indexes[rank]; // Return the cluster index for the desired rank.
212 }
213 }

Listing 24 shows theFuzzyCMeansClusteringTaskApp class, an application
which shows how the clustering methods on classFuzzyCMeansClusteringTask can
be used to cluster an image which file name is passed as an argument to the application.

Listing 24: TheFuzzyCMeansClusteringTaskApp class.

1 package sibgrapi.tutorial;
2

3 import javax.media.jai.* ;
4

5 public class SimpleFuzzyCMeansClusteringTaskApp
6 {
7 public static void main (String[] args)
8 {
9 // Check command line arguments.

10 if (args.length != 6)
11 {
12 System.err.println("Usage: java algorithms.FuzzyCMeans." +
13 "SimpeFuzzyCMeansClusteringTaskApp " +
14 "inputImage outputImage numberOfClusters " +
15 "maxIterations fuzziness epsilon");
16 System.exit(0);
17 }
18 // Load the input image.
19 PlanarImage inputImage = JAI.create("fileload" , args[0]);
20 // Create the task.
21 FuzzyCMeansClusteringTask task =
22 new FuzzyCMeansClusteringTask(inputImage,
23 Integer.parseInt(args[2]),
24 Integer.parseInt(args[3]),
25 Float.parseFloat(args[4]),
26 Float.parseFloat(args[5]));
27 // Run it.
28 task.run();
29 // Get the resulting image (best assignment result).
30 PlanarImage outputImage = task.getRankedImage(0);
31 // Save the image on a file.
32 JAI.create("filestore" ,outputImage,args[1], "TIFF");
33 }
34 }

122 RITA• Volume XI • Número 1• 2004

Java Advanced Imaging API: A Tutorial

7 Conclusions and further information

Several examples of the Java Advanced Imaging API were shown in this tutorial. The
author expects that the example, while simple and short, were enough to give the readers an
idea of the workings of the JAI API and serve as basis for the development of more complex
classes and applications.

Several listings shown in this tutorial are simplified versions of code found in [5], with
comments removed in order to save space.

References

[1] Sun Microsystems, Java home page,http://java.sun.com (last visited in July
2004).

[2] Sun Microsystems, JAI (Java Advanced Imaging) home page,
http://java.sun.com/products/java-media/jai/index.jsp (last
visited in July 2004).

[3] Rodrigues, L.H.Building Imaging Applications with Java Technology, Addison-Wesley,
2001.

[4] Sun Microsystems, JAI (Java Advanced Imaging) Frequently Asked Questions,
http://java.sun.com/products/java-media/jai/forDevelopers/
jaifaq.html (last visited in July 2004).

[5] Santos, R.JAI Stuff (Tutorial): https://jaistuff.dev.java.net (last visited
in July 2004).

[6] Sun Microsystems, JAI (Java Advanced Imaging) API (Application Pro-
gramming Interface) document home page,http://java.sun.com/
products/java-media/jai/forDevelopers/jai-apidocs/index.html
(last visited in July 2004).

[7] Bezdek, J.C.Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, 1981.

RITA • Volume XI • Número 1• 2004 123

