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Centralized Algorithms Based on Clustering with
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Algoritmos Centralizados baseados em Agrupamento com auto-ajuste de Parâmetros
para Observação Cooperativa de Alvos
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Abstract: Clustering on target positions is a class of centralized algorithms used to calculate the surveillance
robots’ displacements in the Cooperative Target Observation (CTO) problem. This work proposes and evaluates
Fuzzy C-means (FCM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with
K-means (DBSk) based self-tuning clustering centralized algorithms for the CTO problem and compares its
performances with that of K-means. Two random motion patterns are adopted for the targets: in free space or on
a grid. As a contribution, the work allows identifying ranges of problem configuration parameters in which each
algorithm shows the highest average performance. As a first conclusion, in the challenging situation in which
the relative speed of the targets is high, and the relative sensor range of the surveillance is low, for which the
existing algorithms present a substantial drop in performance, the FCM algorithm proposed outperforms the
others. Finally, the DBSk algorithm adapts very well in low execution frequency, showing promising results in this
challenging situation.
Keywords: Multi-Agent Systems — Agent-Based Simulation — Clustering Methods — Intelligent Robots

Resumo: O agrupamento de posições de alvos é uma classe de algoritmos centralizados usados para calcular
os deslocamentos de posições dos robôs de vigilância no problema de Observação Cooperativa de Alvos (CTO).
Este trabalho propõe e avalia algoritmos centralizados de agrupamento com auto-ajuste de parâmetro baseados
em Fuzzy C-means (FCM) e DBSCAN com K-means para o problema CTO e compara seu desempenho com
o algoritmo K-means. Dois padrões de movimento aleatório são adotados para os alvos: no ambiente livre
ou em uma grade de obstáculos. Como contribuição, o trabalho permite identificar faixas de parâmetros de
configuração de problemas em que cada algoritmo apresenta melhor desempenho médio. Como uma primeira
conclusão, na situação desafiadora em que a velocidade relativa dos alvos é alta e o alcance relativo do sensor
da vigilância é baixo, para a qual os algoritmos existentes apresentam uma forte queda no desempenho, o
algoritmo FCM proposto supera os outros. Por fim, o algoritmo DBSk se adapta muito bem em situações com
baixa frequência de execução, apresentando bons resultados nesta situação desafiadora.
Palavras-Chave: Sistemas Multiagentes — Simulação Baseada em Agente — Métodos de Agrupamento —
Robôs Inteligentes
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1. Introduction
The Cooperative Target Observation (CTO) problem domain
is one in which a team of moving surveillance robots, for
example, drones, must observe another target robot team in
motion to maximize the Average Number of Observed Targets
(ANOT) in a period. Various practical problems, such as
target recognition, security, and surveillance, are in the CTO
problem domain. A typical scenario of this application can be

seen in Figure 1.

In practice, the currently observing entities are Unmanned
Aerial Vehicles (UAV) [1], Unmanned Ground Vehicles (UGV)
[2], Unmanned Underwater Vehicles (UUV) [3]. Among
others, some applications use micro-drones for performing
surveillance [4], unmanned aerial systems, and GPS data
recorders joined to conduct ecological research [5], and that
performs population and social monitoring through UGVs
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and UAVs, among other situations, [6].
The field was initially explored in [7], where the Cooper-

ative Multi-Robot Observation of Multiple Moving Targets
(CMOMMT) was defined. This problem has two robot groups,
observers and targets, in a 2-dimensional environment; ob-
servers have 360◦ of view observation sensors, where the
mission is to keep targets under observation, both robot types
can move. Cooperative Target Observation (CTO) is a variant
CMOMMT introduced by [3]. The CTO problem domain has
various instances depending on the type of movement of the
targets, resource constraints, the interaction between targets
and observers, and the stated specific objective.

The survey in [8] presents a classification of problems re-
lated to CTO. In the approach adopted in this paper, the team’s
objective is to maximize the observation of targets in a fully
observable environment, in which the targets cooperate with
the observers by informing their locations, so it minimizes the
total time in which the targets escape of the observation of the
observer’s group. Observers work collectively to observe each
target by at least one time, rather than an observer staying all
observation time on a target.

In [9], it was proposed two ways of decision-making for
observers, a K-means-based approach and a Hill-Climb-based
approach, adjustable degree of centralization of the team rea-
soning, showing best results with centralized algorithms. Re-
cently in [10], the decentralized K-means approach was ex-
tended with additional behaviors that increase observers’ au-
tonomy level. Although very efficient in some situations, the
K-means algorithm has some problems when applied in com-
plex configurations, i.e., observers with short range-sensor
targets with high-speed and limited processing. The emer-
gence of empty clusters during the clustering process with
the K-means algorithm is another factor that degrades the
observer performance.

To avoid these problems and improve the performance in
complex CTO configurations, we propose two new algorithms,
a Fuzzy C-means (FCM) [11] based and other approach ex-
ploring dense regions with many targets called Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
[12] associate with K-means, called DBSk. Both algorithms
depend on the right choice of input parameters to works as
well as possible. We propose a generic function for tuning its
input parameters during the experiment based on algorithm
performance. Two random motion patterns were adopted for
the targets: free space and a grid. The baseline results for our
research are those in [9].

This paper is structured in three more sections. Section
2 defines the problem model and algorithms. Experiments
and the results are shown in Section 3. Finally, Section 4
concludes the paper by describing the final remarks and future
research.

2. Model and Algorithms
Figure 2 describes the CTO problem, as defined by [9]. The
Observers and the targets are mobile agents that move in a con-

tinuous environment, non-toroidal rectangular 2-Dimensional
field free of obstacles. Observers attempt to keep under ob-
servation as many targets as possible while the targets move
randomly in the environment. Each observer can see targets
around him through an R limited range radial sensor. Targets
inform their locations, acting cooperatively to be observed
by observers. The general operation in [9] is a cyclic proce-
dure. The coordinator computes the new destination point and
sends it to each observer every γ time step. If one reaches its
destination point in less than γ time steps, it waits until a new
destination point is computed.

The targets do not try to avoid the observers and move
randomly throughout the space. The movement of the targets
is done by setting a destination point, then having the travel
agent towards this point. The targets travel towards their
destination point at most 100 time-steps. If they reach the
destination before 100 time-steps, they can then compute to
a new destination point immediately. If it does not, they
calculate a new destination and follow. Targets’ destination
points are chosen at random from within a local region (one-
quarter of the environment height and width) centered on the
target: the locality helps prevent targets from clustering near
the center of the field on the way to their intended destinations.

In our approach, we are interested in ways to maximize
measures of performance of observation. In [9], the best
results were obtained with centralized solutions, where all
observers were in the same group. The decision-making on
the group is made by the coordinator that receives the targets’
location and assigns destinations for each observers’ member
of the group. We model our solution in the same way, where
a coordinator assigns destinations for the other members, and
we apply new ways of calculating the destinations through
FCM clustering and by a combination of DBSCAN with K-
means (DBSk). The performances of these proposals are
compared against that k-means based in [9].

The objective of the observers is the same objective de-
fined by [7], which maximizes the average of observed targets
during the experiment time. Here, similar to formalism pre-
sented in [13], at each time step t, the observers compute
which targets are monitored, given by the indicator function
Θ(ω), where their value is 1 if ω is monitored at t and 0,
otherwise. Where ω is any target, then at each time-step
is possible to know the number of targets observed by the
observers through a µ value computed by:

µ(t) = ∑
ω∈Ω

θ(ω) (1)

in which Ω stands the conjunct of the all targets ω . The
average value of µ considering all the experiment’s time-steps
is the function to be maximized by the organization as its
objective, defined by:

µ̄ =
1
T ∑

t∈T
µ(t) (2)

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 28 • N. 2 • p.40/49 • 2021



Centralized Algorithms Based on Clustering with Self-tuning of Parameters for Cooperative Target Observation

Figure 1. A typical scenario of the CTO problem. Observers are drones that monitor ground operations on targets.

Figure 2. Screenshot of the model showing a configuration
of targets and observers with their R sensor range.

where T stands the conjunct of the t time-steps, composing the
total time of the experiment. We call the µ̄ value of Average
Number of Observed Targets (ANOT), and this value will be
considered the performance measure of the observers.

2.1 Fuzzy C-means
The K-means-based algorithm uses the observers’ location
as the initial cluster’s center and the location of the targets
as points to be clustered. It clusters data points by similar-
ity measure (Euclidean distance), then the new destinations
are calculated as the average of data points of each cluster,
assigned the movement to each observer to a new point cal-
culated. However, in the K-means cluster, the algorithm with
initial centers assigned can result in empty clusters, as dis-

cussed in [14]. When this happens, the observer of the empty
cluster has no destination to be assigned. Ad hoc solutions
are then adopted to correct such cases.

In [9] and [10] when an empty cluster happens, is as-
signed a random point as the destination. However, another
way to deal with the empty cluster problem can improve the
performance in CTO, avoiding observer moving to random
points. We propose to apply FCM clustering replacing k-
means, where the empty cluster problem exists, with each
point belonging to many clusters at the same time.

Proposed in [15] and improved by [11], FCM is a standard
clustering algorithm that groups data points in a specific num-
ber of clusters. Given the input data values, we determine the
set centers Ci and the membership matrix U , containing each
data point’s membership value concerning the determined
centers. The algorithm is based on the minimization of the
following objective function:

Jm =
N

∑
i=1

C

∑
j=1

um
i j||xi− c j|| , 1≤ m < ∞ (3)

in which C is the set of all clusters, m is a number greater than
one, that defines the allowed distance between data points
and centers, ui j is the degree of membership of xi from the
cluster j, where xi is the i-th of n-dimensional measured data,
c j is the d-dimension center of the cluster, and || ∗ || is the
similarity measure between any measured data and any center.

ui j =
C

∑
k=1

[
||xi− c j||
||xi− ck||

] −2
m−1

, c j =
∑

N
i=1 um

i j · xi

∑
N
i=1 um

i j
(4)

At every step of the iterative optimization of 3, the values
ui j and c j are recalculated according to 4. This process is
repeated until no more significant progress is made in 3.

To apply the FCM in CTO, similar to [7] with K-means,
as proposed in [16] but without self-tuning of parameters,
we consider the observers to be centers and the targets to be
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data points and observers’ destinations as the centers of the
clusters. The initial cluster centers are the current positions of
the observers. There is a rate of algorithm update γ where the
coordinator performs the algorithm with locations received of
the targets and assigns each new center cluster to subordinate
observers.

2.2 DBSCAN
DBSCAN, proposed in [12], is a clustering non-parametric
method based on density, being significantly adequate to find
clusters with arbitrary shape and size by counting points in
regions with this size. The key idea is that, for each data point
in a cluster, the neighborhood in a radius of this point has to be
composed by a number given a minimum number of neighbor
points. This way, the clusters are identified as dense regions,
and any other points out of these regions are considered noise
points. This algorithm’s use arises from the insight that small
regions with high target density should be observed and not
divided into different clusters.

This algorithm requires two input parameters: the radius
ε (define the ε-neighborhood of a p point) and MinPts, the
minimum number of points in this ε-neighborhood to be con-
sidered a cluster. Each data point has a ε-neighborhood given
by:

Nε(p) = {∀q ∈ D|dist(p,q)< ε} (5)

where p and q belong to D, the conjunct with all data points
clustered. When an area of interest is discovered, according
to ε and MinPts, are defined the central point p and the other
points that have fewer neighbors than MinE ps are the edge
points. The cluster in DBSCAN is formed through points
in a ε-neighborhood and density-reachable (with a chain re-
specting ε and MinE ps). All the other points not clustered by
DBSCAN are considered noise-points.

2.3 DBSk: Combining DBSCAN with k-means
In CTO, the points are targets, and the value is an approxi-
mated value of the observers’ sensor-range, and the destiny
point for observers is the centroid of each cluster. The dif-
ferent sensor-range values in CTO can result in many or few
noise-targets; besides that, in so many cases, the cluster num-
bers found are less than observers, causing observers without
destiny.

We propose to combine DBSCAN with k-means, using k-
means to cluster noise-targets, where the observers’ distance
partitions the targets. We used ε value = 1, as described by
[10] as the better configuration value. The DBSk algorithm
proposed to resolve this problem and exploring dense regions
work as follows:

1. Targets are clustered with DBSCAN.
2. Are calculated all center points of each DBSCAN-

cluster, then assigned for the closest observer for each
point.

3. If the number of targets-noise is greater than the num-
ber of observers without destiny, then target-noisy is
clustered with K-means.

4. If observers are left without a destination, they are as-
signed the closest target as destiny for these observers.

We studied the behavior of the DBSk algorithm. This
is shown in Figure 3. Each subfigure is the memory of a
complete run of the simulation. K-means calculated green
points, black points were calculated by DBSCAN, and yellow
points were calculated for another condition stated in step 4
from DBSk. Note that from left to right as the range sensor
grows, the number of green dots decreases and yellow dots
grow, and the number of black dots grows from Figure 3a to
Figure 3b, and then decreases in Figure 3c. Thus, in scenarios
with low values for sensor range (used as ε), few clusters
are discovered, generating many noise-targets clustered by K-
means. In cases with high sensors range, DBSCAN generates
few noise-targets making the combination flexible to meet a
wide range of sensor range. To follow the insight, we want
the maximum black points. This will be done through the
self-tuning of ε by the algorithm.

2.4 Self-tuning Function
The performance of the FCM and the DBSk algorithms are
sensitive to the input parameters. In FCM, the m value, as
discussed in [17], is vitally important to the algorithm, where
values close to inferior limit 1 tends to reduce the participation
of the targets in many clusters, and for large values, all targets
tend to belong to all clusters at the same time. In this situation,
different configurations work better with distinct m values.
Therefore, a local search auto-tuning function is used to tune
these parameters at run time.

In DBSk, the step DBSCAN clustering is sensitive to
the ε value according to the configuration, where for large
range-sensors, lower ε values can avoid large unit clusters,
and for small range-sensors, values greater can make sure
DBSCAN clusters. High speed-targets can undo clusters with
small ε values. Fixed values for m and ε can decrease ANOT
for different configurations; then, we propose a method for
online self-tuning of the value based on the previous values’
performance.

As seen in Algorithm 1, ρ is the parameter value to be
tuning, φ is an arbitrary value that defines the absolute dis-
placement value of the parameter, signal defines the direction
of displacement (+1 or −1), and finally, ∆ is ANOT value
measured through the γ steps since that last time the algorithm
performed, and i index of ∆ is the current time-step where
which is performed the algorithm. Every time the perfor-
mance decreases, the algorithm inverts the displacement value
searching for the best value for a given CTO configuration.
In the Algorithm 1, the signal input is required to enable self-
tuning in the case where the parameter is of the smaller-better
type or when it is of the higher-better type.
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(a) Range-sensor and ε = 5

(b) Range-sensor and ε = 15

(c) Range-sensor and ε = 25
Figure 3. Final screenshot of runs whit DBSk destination
points calculated in a experiment with γ = 10 and ε fixed as
range-sensor for 1500 time-steps

Algorithm 1: Self-Tuning of Parameters function
Data: signal, ρ , φ , ∆i, ∆i−1 (the two last ANOT

values calculated)
Result: ρnew (the new parameter value)

1 Initialization : signal← 1 if signal is null
2 if ∆i−∆i−1 < 0 then
3 signal← signal ∗−1
4 end
5 ρnew← ρ +(φ ∗ signal)
6 return ρnew

3. Results
In this section, we present all the experimental results of this
work, starting by the study the effect of the γ update rate
on the performance of the algorithms in Section 3.1. We
study in Section 3.2 how the parameters m and ε influence
the performance of the proposed algorithms, thus justifying
the need for the self-fitting function. Also, we show the
comparative performance results between FCM, DBSk, and
K-means. In Section 3.3, the movement of targets occurs in
an open environment within the boundary. In Section 3.4, the
movement of targets is restricted to occur on a rectangular
grid.

3.1 Update Rate
As in [9], we tested the impact of the γ value in our approaches
to know how resistant these algorithms are to increase the γ

value; it may symbolize communication and processing dif-
ficulties. In one case, we picked γ value from {5,10,20},
targets speed value in 0.9, varying the sensor range from
{5,10,15,20,25}; in the other case, varying targets speed for
{0.1,0.25,0.5,0.75,0.9} with range-sensor in 5.These cases
are the harder scenario possible in our simulations for ob-
servers. The results are shown in Figs. 4 and 5.

As expected, ANOT decreases with increasing targets’
speed for all algorithms with the fixed sensor range in Fig-
ure 4 and increases with increasing sensor range with fixed
targets speed in Figure 5. However, comparing the respective
performance, DBSk showed better resistance to increase to γ

values, where ANOT lines are closer together, Figures 5b and
4b, than in FCM case, Figures 4a and 5a. The dense regions
explored in the DBSk take more time to dismount.

3.2 Paramerters m and ε

In order to investigate the ranges of active values of m and
ε of the algorithms proposed in different configurations, we
apply tests with all possible values for range-sensor and speed-
targets and using γ = 10. We limited the values of the m
for {m > 1 and m < 3} with an initial value as 2 and φ =
0.05. For ε we limited the value between 2.5 and 25, with
15 as the initial value and φ = 0.5 and MinPts = 2. We
perform the mean value of the final values of m and ε through
30 repetitions. These configurations were used in all other
experiments. The results are shown in Tables 1 and 2.
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(a) FCM varying speed-targets

(b) DBSk varying speed-target
Figure 4. Comparison ANOT for different γ values varying
Speed-Targets (sensor range = 5)

(a) FCM varying range-sensor

(b) DBSk varying range-sensor
Figure 5. ANOT for different γ values varying
Sensors-Range (targets-speed = 0.9)
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Table 1. The best m values found in γ = 10 (FCM)

Sensor Targets Speed
Range 0.1 0.25 0.5 0.75 0.9

5 2.395 2.495 2.475 2.230 2.145
10 2.070 1.695 2.030 2.060 2.460
15 1.655 1.690 2.105 2.410 2.060
20 1.520 2.160 1.990 2.445 2.320
25 1.990 1.925 1.780 2.165 2.260

Table 2. The best ε values found in γ = 10 (DBSk)

Sensor Targets Speed
Range 0.1 0.25 0.5 0.75 0.9

5 18.50 19.25 18.80 19.85 19.95
10 13.80 13.20 18.55 16.05 15.20
15 11.70 14.60 17.10 13.60 18.10
20 15.55 12.35 13.65 17.10 14.80
25 12.25 14.20 14.70 18.50 18.00

In Table 1, we noted that for small values for targets-speed
and large values for sensors-range, the m value was decreased
and increased for short sensor-range and high speed-targets
that significant fuzzy groups outcome in best results when
the configuration is complicated (small sensor-range and high
target-speed).

In Table 2, small values in the sensor range result in high
best values for ε showing an inversely proportional growth,
and except for the sensor range = 20, ε is directly propor-
tional to targets-speed. In short sensor-range, the increase
of the ε was to decrease the targets-speed, exploring dense
regions, and too large range-sensors high ε values can result
in few clusters, then this value is naturally decreased for make
clusters with K-means and target-nearest (step 4 in DBSk).

Tables 1 and 2 show the importance of adopting self-
tuning. Note that the optimal values of m parameter vary
between 1.520 and 2.495, and the ε parameter varies between
11.70 and 19.25, which are variations of approximately 60%.

3.3 Experiments in an Unrestricted Environment
To compare the algorithms, we use K-means [9] with α value
= 1, the best configuration possible, as stated by [10] and we
found the different situations where each algorithm is best
than others.

Figure 6 is conclusive as to the superiority of k-means
when the relative sensor range is large. K-means has the
added advantage of being light processing and allowing larger
γ values. On the other hand, when the relative sensor range
is small, Figure 7 shows that FCM outperforms the others for
all relative target speeds. However, note that FCM requires
higher processing and higher update rate (lower γ), which
implies higher communication costs.

FCM was best in cases with γ = 5 and 10, for small range-

Figure 6. ANOT for Sensor-Range = 25 and γ = 10.

sensor and not high-speed-targets, as seen in Figure 8 the
ANOT is considerably larger than other algorithms. The fuzzy
clusters from FCM have centers closer to targets because of
the pertinence calculated, and other case is the non-existence
of empty clusters in FCM.

DBSk is more resistant to the increase of the γ value, as
seen in the previous subsection, and the best performance of
the algorithm was in high γ values, and high-speeds and low
range-sensor. In Figure 9, the ANOT value for DBSk is better
than others, and in Figure 8, where the exploration of dense
regions with DBSCAN outcome good results.

The hypothesis of the Gaussian distribution of the results
of 30 executions was adopted to perform the t-student and
chi-square hypothesis tests for all the comparisons in Figures
6-9, which directly implicate the conclusions. Two-tailed tests
of significance were performed with 95% confidence. For all
comparisons, a P-value of < 0.05 was considered statistically
significant.

3.4 Experiments in a Grid Environment
We also experimented in a scenario in which targets have
restricted movements on a grid while observers move freely.
We use a Manhattan grid as the first approximation of an
urban environment, where the movement of the vehicles is
restricted to the streets. In CTO-grid, the blocks are uniform
rectangles 13×13 units equally separated by 8 units (width
of streets) units one to the other, arranged as a grid and was
developed as an agent-based simulation with NetLogo 6.0.41,
with integration with software R2 and can be seen in Figure 10.

As seen in Figure 10, the border of the street in north and
east has 4 units complete, totalizing 49 obstacles (gray color),

1https://ccl.northwestern.edu/netlogo/
2https://www.r-project.org/
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Figure 7. ANOT for Sensor-Range = 5 and γ = 5.

the red cars are the bus targets, and blue airplanes are the
UAVs observers. In the experiments, the algorithms’ perfor-
mances based on K-means, FCM, and DBSk were compared.
To measure the algorithms’ performance, we do the sort of
the target random destinations similar to [9] with a restric-
tion of this point is a point in the street, avoiding obstacles
Algorithm 2.

Algorithm 2: Target Behavior in the Grid Environ-
ment

if not exists a goal position OR distance to goal
position is < speed-targets then

calculate a random new point as the goal where
that position has a maximum distance of < 25%
of the total size of the environment if the goal is
part of an obstacle then

rerun this algorithm from the beginning
end
Set the new point calculated as the goal and set

the orientation for this point
end
if there an obstacle ahead then

Set a new orientation between north, south, east,
or west with less angular displacement

end
Forward to goal point

We compared K-means with α = 1, with FCM and DBSk
in all configurations possible. Initially, the K-means consumes
considerably less computational time, however in challenging
situations (small range-sensors, high-speed targets, and high γ

values), FCM and DBSk compensated the high computational
time with good ANOT values.

Figure 8. ANOT for Sensor-Range = 5 and γ = 10.

Figure 9. ANOT for Sensor-Range = 5 and γ = 20.

Table 3. The best m values found in γ = 10 (FCM) for grid
environment

Sensor Targets Speed
Range 0.1 0.25 0.5 0.75 0.9

5 2.500 2.460 2.595 2.190 2.075
10 2.155 1.985 1.915 2.215 2.150
15 1.800 1.670 2.040 2.190 2.100
20 1.960 2.130 1.945 2.180 2.135
25 1.895 2.160 2.180 2.135 2.180
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Figure 10. Implementation of CTO in a grid environment

Table 4. The best m values found in γ = 10 (DBSk) for grid
environment

Sensor Targets Speed
Range 0.1 0.25 0.5 0.75 0.9

5 14.90 16.40 19.05 15.80 18.80
10 14.55 15.80 15.05 16.55 16.05
15 16.10 15.60 17.15 19.35 15.40
20 13.85 17.50 13.15 12.55 14.95
25 9.60 15.50 16.55 14.20 19.50

Tables 3 and 4 show that the optimal values of the algo-
rithms’ parameters do not suffer the effect of the restriction
on the movement of the targets. Coherently, Figures 11, 12
and 13 show that the positions in the performance rank of the
algorithms also do not change. Figure 14 plus one confirms
that for Sensor Range, large K-means is the recommended
algorithm.

The hypothesis of the Gaussian distribution of the results
of 30 executions was adopted to perform the t-student and chi-
square hypothesis tests for all the comparisons in Figures 11-
14, which directly implicate the conclusions. Two-tailed tests
of significance were performed with 95% confidence. For all
comparisons, a P-value of < 0.05 was considered statistically
significant.

4. Conclusions and Future Works
In this paper, we propose two new centralized approaches
to improve observers’ performance in the CTO problem in
a difficult situation, where the targets move at high relative
velocity, and the observer sensor is of low range. Since these
algorithms are parameter-dependent, we propose a function
to adapt the algorithms or different configurations online,
making them self-tuning. The proposed algorithms, FCM and
DBSk, were analyzed, and their performances compared to

Figure 11. Performance of different speed targets with
range-sensor = 5 and γ = 5 for the grid environment

k-means proposed in the literature.
From this research, some conclusions can be stated. When

in suitable configurations, in which the relative speed of the
targets is low and the close range of the sensors is high, the
algorithm based on k-means is superior. At the other extreme,
when the sensor range is low, and the relative speed of the
targets is high, the DBSk algorithm outperforms the others.
Finally, when the relative velocity of the targets is high, the
sensor range is also low, the algorithm based on FCM is
recommended; this is because the algorithm based on k-means
suffers from the empty cluster problem in this configuration,
which FCM avoids.

The relative performance of the algorithms was not af-
fected when the movement of the targets is restricted to a
grid environment, and it should be noted that the higher com-
putational cost of the FCM and DBSk is compensated by a
lower execution frequency required, as shown in the presented
experiments (larger γ). It was not evaluated in this work, but
during its development, it was evidenced that the dynamic
self-tuning of the algorithms can also be used to deal with the
local minimum problems commonly presented by K-means
clustering algorithms. This will be investigated in another
work.
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