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Abstract: Hoare Logic has a long tradition in formal verification and has been continuously
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1. Introduction

Program verification is a systematic approach to
proving the correctness of programs. Correctness
means that the programs enjoy certain desirable
properties. For sequential programs these proper-
ties are delivery of correct results and termination.
For concurrent programs, those with several active
components, the properties of interference freedom
(undesired manipulation of shared variables), dead-

lock freedom and fair behavior are also important.
Using Floyd/Hoare logic [1, 2], one can prove

that a program is correct by applying a finite set
of inference rules to an initial program specifica-
tion of the form {P} c {Q}, such that P and Q are
logical assertions, and c is an imperative program
or program fragment. The intuition behind such a
specification, widely known as Hoare triple or as
partial correctness assertion (PCA), is that if the
program c starts executing in a state where the as-
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sertion P is true, then if c terminates, it does so in
a state where the assertion Q holds. This program
logic has a long tradition in formal verification and
has been continuously developed and used to ver-
ify a broad class of programs, including sequential,
object-oriented and concurrent programs [3, 4].

On the other hand, modern proof assistants are
tools with which several important mathematical
problems are proved correct, and which are also
being used as a support for the development of pro-
gram logics libraries that can be used to certify soft-
ware developments. Therefore, it is meaningful to
ask whether program verification cannot be carried
out automatically. Unfortunately, the theory of com-
putability tells us that fully automatic verification
of program properties is in general an undecidable
problem. However, for Hoare logic, much of the
proof process can be automated through the process
of computing verification conditions. Interactive
proof assistants like ISABELE/HOL [5] and COQ

[6, 7], provide ways to specify and prove programs
using Hoare logic with a great degree of automa-
tion. Moreover, Hoare Logic lies at the core of a
multitude of tools that are being used in academia
and industry to specify and verify real software
systems. In fact, the current state of the art proof
technology for programming languages and verifi-
cation systems is based or inspired by Hoare logic
[8, 9, 10].

In ISABELLE/HOL, the program semantics and
the proof system are embedded into higher-order
logic and then suitable tactics are formalized to
reduce the amount of human interaction in the ap-
plication of the proof rules. As far as possible,
decision procedures are invoked to check automati-
cally logical implications entailed by the premises
of the proof rules. A dedicated library provides
great support for automation, a concrete syntax
for the specification of Hoare triples, a verification
condition generator, and a rich set of proof tactics
and tools. Most importantly, ISABELLE provides
a formal proof language called Isar, that supports
readable, structured and detailed proofs in natural
deduction style. Modern research, work and ad-
vertisement of the benefits of state of the art proof
assistants tend to give a great emphasis on automa-

tion of the proof process, or at least parts of it. Even
when automation works, a high level proof may
be wanted, either because it is required for com-
munication, certification, or for the simple joy of
enlightenment. Thus the skill of proof construction,
hopefully in language as natural as possible, is a
craft that must be learned.

The purpose of this work is to provide a de-
tailed and accessible exposition of the several ways
that one can conduct, explore and write proofs of
correctness of sequential imperative programs with
Hoare logic and the ISABELLE proof assistant. Be-
sides that, we highlight a proof methodology based
on proof scripts and high level structured proofs in
Isar. The first are very helpful in proof exploration,
while the second is fundamental to control proof
complexity and to convey clear reasoning. As an
example of this approach, we develop in detail a
correctness proof of a non-trivial case study: the
insertion sort algorithm.

This text is organized as follows: in section 2 we
provide a concise, yet formal presentation of Hoare
Logic, with special attention to semantical concepts.
Section 3 presents the underlying ideas about au-
tomation of Hoare Logic and in section 4 we intro-
duce the basic concepts for proving correctness of
programs in ISABELLE with Hoare Logic with a
simple arithmetic problem: the exponentiation op-
eration with positive integer exponents. Section 5
discusses in detail a preliminary case study: reversal
of polymorphic lists. In section 6 we discuss a more
substantial case study, insertion sort, and discuss the
need to prove several auxiliary lemmas to achieve
almost full automation. In section 7 we discuss how
to reason with Hoare logic in the proof assistant
COQ and in the verification aware programming lan-
guage DAPHNY. Finally, we summarize the main
ideas and contributions of this work. The ISABELLE

theory related to this development can be found at
〈https://github.com/alfiomartini/hoare-imp-isab〉.

2. Background
The material in this section is for the most part,
well-known, and it is included here in order to fix
notation and to improve readability. We use “iff” as
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an abbreviation for “if and only if”.

2.1 Hoare Logic: Syntax and Semantics

The central feature of Hoare logic are the Hoare
triples or, as they are often called, partial correct-
ness assertions. We use both expressions inter-
changeably. A triple describes how the execution of
a piece of code changes the state of the computation.
A Hoare triple is of the form {P} c {Q}, where P,Q
can be assertions in a specification language and c
is a program fragment in an imperative language. P
is called the precondition and Q the postcondition
of the triple.

The imperative language we consider has the
usual constructors for assignment, sequential com-
position, conditional command and the identity pro-
gram. We assume a countably infinite set Var of
program variables, ranged over by metavariables
x,y, . . .. The abstract syntax of the syntactic cate-
gory Prg is given by the following grammar, where
c0,c1,c range over Prg, a over arithmetic expres-
sions, and b range over boolean expressions. The
precise syntax of arithmetic and boolean expres-
sions is standard and can be found elsewhere [11].

c ∈ Prg ::= skip | x := a | c0;c1
| while b do c od
| if b then c0 else c1 fi

The grammar presented above defines an imper-
ative programming language that is simple enough
for us to introduce in a precise way the main ideas
underlying the semantics and proof theory of Hoare
Logic. However, in some examples, using the same
programming constructions, we will write programs
that express computations not only over integers,
but also over polymorphic types, like lists.

An informal understanding about the meaning
of a Hoare triple can be given as follows: If P holds
in the initial state, and if the execution of c termi-
nates when started in that state, then Q will hold in
the state in which c halts. Note that for {P} c {Q}
to hold, we do not require that c halts when started
in states satisfying P, but that if it does halt, then
Q holds in the final state. As an example, taken

from [12], we have the following partial correct-
ness assertion to compute AB for an integer A and
non-negative integer B.

{a = A ∧ b = B∧B≥ 0}
i := 0; p := 1;
while i < b do p := p∗a; i := i+1 od
{p = AB}

(2.1)

The lower case variables are the state or pro-
gram variables. The uppercase variables are the
so-called logical or integer variables. Logical vari-
ables are often used as parameters, to remember the
initial values of program variables.

In this section we assume that both logical and
program variables range over the integers, but in
ISABELLE/HOL they may range over the rich col-
lection of types provided by HOL and polymor-
phic types as well (see section 4). Thus, a notion
of satisfaction for a Hoare triple has to take into
account values for both logical and program vari-
ables. For the first case we use environments and
for the second, states. An environment for the (log-
ical) integer variables is a function env : IVar→ Z,
where IVar is a countably infinite set of integer log-
ical variables. The set of all such environments is
Env = (IVar→ Z).

In order to evaluate an expression or to define
the execution of a command, we need the notion of
a memory state. A memory state σ is an element of
the set Σ, which contains all functions from program
variables to integers: σ ∈ Σ = (Var→ Z). Given a
state σ , we denote by σ [x 7→ n] the memory where
the value of x is updated to n, i.e.,

σ [x 7→ n](y) =

{
n if y = x
σ(y) if y 6= x

We assume a basic satisfaction relation between
states, environments and formulas in the specifica-
tion logic. The judgment σ |=env P states that P
holds in the state σ : Var→ Z with respect to the
environment env : IVar→ Z.

A program assertion P is valid in an environ-
ment env : IVar→ Z, written |=env P, iff

∀σ ∈ Σ. σ |=env P.
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A program assertion P is called arithmetic valid,
written |= P, iff

∀ env : IVar→ Z. |=env P.

We say that Q is a logical consequence of P in an
environment env : IVar→ Z, written P |=env Q, iff

∀σ ∈ Σ. σ |=env P→ σ |=env Q.

Moreover, we say that Q is a logical consequence
of P, written P |= Q iff

∀σ ∈ Σ. ∀ env : IVar→Z. σ |=env P→ σ |=env Q.

In the following we assume that the seman-
tics of programs is given by an inductive evalua-
tion relation ⇓p⊆ Σ×Prg×Σ. By an expression
〈σ ,c〉 ⇓p σ ′ we mean that the execution of program
c from the initial state σ leads to the final state σ ′

(see e.g, [11, 13]).
We say that a triple {P} c {Q} is true at a state

σ ∈ Σ and environment env : IVar→ Z, written
σ |=env {P} c {Q} iff

∀σ ′ ∈ Σ.σ |=env P→ (〈σ ,c〉 ⇓p σ
′→σ

′ |=env Q).

The triple is valid in an environment env : IVar→
Z, written |=env {P} c {Q} iff

∀σ ∈ Σ. σ |=env {P} c {Q}.

Finally, a partial correctness assertion (Hoare
triple) is (arithmetic) valid, written |= {P} c {Q},
iff

∀ env : IVar→ Z. |=env {P} c {Q}.

Note that all these semantic concepts are formulas
in higher order logic, since we quantity (univer-
sally) both over environments and states.

2.2 Hoare Logic: Proof Calculus

The following rules of the Hoare Proof Calculus
define inductively the ternary relation of provability,
denoted by the symbol `. This relation is defined
by triples, where the first and third components
are assertions in a given specification logic (first or

higher order logic) and the second component is
an imperative program. These triples can be seen
as theorems of the proof calculus. The expression
Q[x/a] means the simultaneous replacement of ev-
ery free occurrence of the program variable x in the
assertion Q by the arithmetic expression a.

Skip
` {P} skip {P}

Ass` {Q[x/a]} x := a {Q}

` {P} c1 {Q} ` {Q} c2 {R{ Comp
` {P} c1;c2 {R}

` {P∧B} c1 {Q} ` {P∧¬B} c2 {Q}
IfE` {P} if b then c1 else c2 fi {Q}

` {P∧B}c{P}
PWh` {P} while b do c od {P∧¬B}

` P→ Q ` {Q} c {R}
Stren` {P} c {R}

` {P}c{Q} ` Q→ R
Weakn` {P} c {R}

The power of Floyd/Hoare treatment of impera-
tive programs [2, 1] lies in its use of variable sub-
stitution to capture the semantics of assignment:
P[x/a], the result of replacing every free occurrence
of program variable x in P by expression a, is the
precondition which guarantees that an assignment
x := a will terminate in a state satisfying P. At
a stroke, difficult semantic questions that have to
do with stores and states are converted into simpler
syntactic questions about first-order logical formula.
The rule Ass can be understood as follows: if ini-
tially P[x/a] is true, then after the assignment x will
have the value of a, and hence no substitution is
necessary anymore, i.e., P itself is true afterwards.
The rule PWh deserves a more detailed explanation.
The truth of a triple {P} c {Q} depends on the state
and in general, we do not know how many times
(if ever) the loop body will execute for each given
initial state, and thus we cannot predict the final
state after the loop finishes. It will change after
each execution of the body. Therefore, we cannot
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specify the functional behaviour of a loop with ar-
bitrary assertions P and Q. In the rule, the assertion
P denotes an invariant assertion, i.e., a relation be-
tween the program variables that remain constant
during loop execution. The rules says that if execut-
ing c once preserves the truth of P, then executing
c any number of times also preserves the truth of
P. Thus a loop invariant is a property of a program
loop that is true before (and after) each iteration.
The consequence rules of precondition strengthen-
ing (Stren) and postcondition weakening (Weakn)
are the rules that connect the proof system of the
underlying specification language with the Hoare
calculus itself. The formal presentation of the re-
maining rules match our intuitive understanding of
the programming constructs.

Let {P} c {Q} be a partial correctness asser-
tion. Then the Hoare calculus is sound, i.e., every
theorem is a valid formula.

` {P} c {Q} only if |= {P} c {Q}

Example 2.1. Using the proof rules, we can or-
ganize the proof of example 2.1 according to the
following proof tree, where

w , while i < b do body od
init , i := 0; p := 1
body , p := p∗a; i := i+1;
Pre , a = A∧b = B∧B≥ 0
Pos , p = AB

bw , i < b
INV , p = ai∧ i≤ b∧a = A∧b = B

... 2
` {INV ∧bw} body {INV}
` {INV} w {INV ∧¬bw} ... 3

` {INV} w {Pos}

... 1
` {Pre} init {INV}

...
` {INV} w {Pos}

` {Pre} init;w {Pos}

where the missing proof trees 1 , 2 and 3 corre-
spond, respectively, to the proof trees of the follow-
ing proof obligations:

1 The invariant is true after initialization.

2 The invariant is preserved by the loop.

3 The invariant is strong enough to entail the
postcondition, i.e., ` INV ∧¬bw→ Pos.

The above proof tree tell us that to prove the
original triple, it is sufficient to solve the three proof
obligations indicated by the vertical dots.

Using the rules of assignment and then the rule
composition, we can reduce the first two proof
obligations to a set of verification conditions in
the specification logic. For instance, we can give
the following linear presentation for the proof tree
2 , where AB , a = A∧b = B and IAB , i+1≤

b∧AB, pIAB , p = ai+1 ∧ IAB, paIAB , p ∗ a =
ai+1∧ IAB:

 {pIAB} i := i+1 {INV}

 {paIAB} p := p∗a {pIAB}

 {paIAB} p := p∗a; i := i+1 {INV}

 INV ∧bw


...

 p∗a = ai+1∧ IAB

Line 1 and 2 follows from the assignment rule,
and line 3 by the rule of composition. The implica-
tion outlined in the proof box 4−6 could be proved,
for instance, like this:

 INV ∧bw Pr

 i < b ∧ E(1)

 i+1≤ b Th(2)

 p = ai ∧ E(1)

 p∗a = ai+1 Th(4)

 p∗a = ai+1∧ i+1≤ b ∧I(5,3)

 INV ∧bw→ paIAB
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where Th denote basic laws of arithmetic (theo-
rems). Thus, to prove the original triple, it is suf-
ficient to prove the following implications, also
called verification conditions (see section 3.2):

1 ` a = A∧b = B∧B≥ 0
→ a0 = 1∧b≥ 0∧a = A∧b = B

2 ` INV ∧ i < b
→ p∗a = ai+1∧ i+1≤ b∧a = A∧b = B

3 ` INV ∧¬bw→ Pos
(2.2)

These assertions are arithmetic valid and also
provable in any reasonable presentation of the the-
ory of integer arithmetic [14, 15].

3. On Automation of Hoare Logic
In this section we discuss annotated specifications,
verification conditions and how this automation pro-
cess is formalized in ISABELLE/HOL.

3.1 General Idea and Derived Rules

From the small example shown in 2.1 we can clearly
see that proofs are typically long and boring. Be-
sides, there are a lot of complicated details to get
right (formal proofs of the verification conditions).
Also, in practice, we work with the proof system in
a backwards way: starting from the goal {P} c {Q},
one generates subgoals, subsubgoals, etc., until the
problem is solved.

A typical system for automation of Hoare Logic
takes as input a partial correctness specification
(Hoare Triple) annotated with logical assertions de-
scribing relationships between variables. From the
annotated specification, the system generates a set
of purely mathematical statements, called verifica-
tion conditions (VC’s). The verification conditions
are passed to a theorem prover program, which
attempts to prove them automatically. If it fails,
advice is asked from the user.

Although proof rules presented in section 2.2
are sufficient for all proofs, the rules for assign-
ment, skip command and while loop are inconve-
nient: they can only be applied backwards if the

pre- or postcondition are of a special form. Thus, in
searching for a technique for automation of Hoare
Logic, the following derived rules are preferred,
since they can be applied backwards without regard
to the form of the pre- and postconditions.

` P→ Q
Skip’

` {P} skip {Q}
` P→ Q[x/a]

Ass’` {P} x := a {Q}

` {P∧b} c {P} ` P∧¬b→ Q
PWh’` {P} while b do c od {Q}

3.2 Annotated Specifications and Verifica-
tion Conditions

Annotated commands are the central idea behind
the development of automated tools for establishing
the validity of partial correctness assertions. An
annotated command is a command with assertions
inserted within it. A command is said to be properly
annotated if assertions have been inserted at the
following places:

• Before each command ci (where i > 0) in a
sequence c1;c2; . . . ;cm where each ci is not
an assignment command.

• After the word do in the while command.

Intuitively, the inserted assertions should ex-
press the conditions one expects to hold whenever
control reaches the point at which the assertion oc-
curs. A properly annotated specification is a Hoare
triple {P} c {Q} where c is a properly annotated
command. Thus, the syntactic set of annotated com-
mand is defined by the following grammar:

c ::= skip | x := a | c0;x := a | c0;{D}c1
| if b then c1 else c2 fi
| while b do {D}c od

In set of productions above, x is a program vari-
able, a an arithmetic expression, b is a boolean
expression, c,c0,c1 are annotated commands and D
is an assertion such that in c0;{D}c1, c1 is not an
assignment. Note that in a sequence of commands

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.89/101 • 2020



Hoare Logic in ISABELLE/HOL

c0;c1, it is unnecessary to do this when c1 is an as-
signment x := a, because in this case an annotation
can be derived from the postcondition. In an anno-
tated while loop while b do {D}c, the assertion D
is intended to be an invariant. An annotated partial
correctness has the form {P} c {Q}, where c is an
annotated command. Ignoring the annotations, an
annotated command is an ordinary command. An
annotated partial correctness assertion is valid when
its associated unannotated Hoare triple is.

Example 3.1. The annotated partial correctness
specification corresponding to example 2.1 is shown
bellow, where INV , p = ai∧ i≤ b∧a = A∧b = B.

powerAnn ,
{a = A ∧ b = B∧B≥ 0}
i := 0; p := 1;
{INV}
while i < b do {INV} p := p∗a; i := i+1 od
{p = AB}

(3.1)

Note that we are entitled to use the invariant as
an annotation before the loop, since the invariant
is always true at the start of the while construct.

That not every annotated assertion is valid, is
clear. In order to be so, it is sufficient to establish
the validity of certain assertions, called verification
conditions, where all mention of commands is re-
moved. Verification conditions are purely logical
formulas, not containing program constructs. They
can be checked or discharged using any standard
proof tool (theorem prover or proof assistant) with
support for the data types of the language.

Definition 3.2. The function that maps an anno-
tated Hoare triple to its set of verifications condi-
tions is defined by structural induction on annotated
commands as follows:

vc({P} skip {Q}) = {P→ Q}
vc({P} x := a {Q}) = {P→ Q[x/a]}
vc({P} c0;x := a {Q}) = vc({P} c0 {Q[x/a]})
vc({P} c0;{D} c1 {Q}) = vc({P} c0 {D})
∪ vc({D} c1 {Q})

(c1 not an assignment)
vc({P} if b then c1 else c2 fi {Q})
= vc({P∧b} c1 {Q})
∪ vc({P∧¬b} c2 {Q})
vc({P} while b do {D}c od {Q})
= vc({D∧b} c {D})
∪ {P→ D}∪{D∧¬b→ Q}

Example 3.3. Using definition 3.2 on the example
3.1, we have:

vc(powerAnn)
= vc({Pre} i := 0; p := 1 {INV})
∪ vc({INV} w {p = AB})

= {Pre→ 1 = a0∧0≤ b∧AB}∪{INV → INV}
∪ vc({INV ∧bw} body {INV})
∪{INV ∧¬bw→ p = AB}

= {Pre→ 1 = a0∧0≤ b∧AB}
{INV ∧bw→ p∗a = ai+1∧ i+1≤ b∧AB}
{INV ∧¬bw→ p = AB}

It can be shown that for an arbitrary annotated
partial correctness assertion {P} c {Q} to be valid,
it is sufficient that its verification conditions are
valid (see [16]).

4. Hoare Logic in ISABELLE/HOL

The purpose of this section is to introduce the ba-
sic concepts of ISABELLE/HOL needed to read the
paper and to present the essential ideas of Hoare
Logic in ISABELLE/HOL as it is formalized in the
library HOL-Hoare1.

Using Floyd/Hoare logic [1, 2], we can prove
that a program is correct by applying a finite set of

1https://isabelle.in.tum.de/dist/library/HOL/HOL-Hoare/
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inference rules to an initial program specification of
the form {P} c {Q} such that P and Q are logical
assertions, and c is an imperative program. The
intuition behind such a specification, widely known
as Hoare triple or as partial correctness assertion
(PCA), is that if the program c starts executing in
a state where the assertion P is true, then if c ter-
minates, it does so in a state where the assertion Q
holds.

ISABELLE is a generic meta-logical framework
for implementing logical formalisms. It is a generic
proof assistant that allows mathematical formulas
to be expressed in a formal language and provides
tools for proving those formulas in a logical cal-
culus. ISABELLE/HOL is the specialization of IS-
ABELLE for HOL, which stands for Higher Order
Logic [17]. We use the two terms interchangeably
to denote specialization of ISABELLE to Higher Or-
der Logic. HOL can be understood by the equation
HOL = Functional Programming + Logic. Thus,
most of the syntax of HOL will be familiar to any-
body with some background in functional program-
ming and logic. We just highlight the essential
notation. The space of total functions is denoted
by the infix⇒. Other type constructors, e.g., list,
set, are written postfix, i.e., follow their argument
as in ′a set, where ′a is a type variable. Lists in
HOL are of type ′a list and are built up from the
empty list [ ] via the infix constructor # for adding
an element at the front. In the case of non-empty
lists, functions hd and tl return the first element
and the rest of the list, respectively. Two lists are
appended with the infix operator @. Function rev

reverses a list. In HOL, types and terms must be
enclosed in double quotes.

The HOL-Hoare theory is an implementation
of Hoare logic for a simple imperative language
with assignments, null command, conditional, se-
quence and while loops. Each while loop must be
annotated with an invariant. Hoare triples can be
stated like goals of the form

VARS x y . . .{P} prog {Q},

where prog is a program in the language, P is the
precondition, Q the postcondition. These assertions
can be any formula in HOL, which are written in

standard logical syntax. The prefix x y . . . is the
list of all program variables in prog. The latter list
must be nonempty and it must include all variables
that occur on the left-hand side of an assignment in
prog.

The implementation hides reasoning in Hoare
logic completely and provides a method (vcg) for
transforming a goal in Hoare logic into an equiva-
lent list of verification conditions in HOL. The im-
plementation is a logic of partial correctness. You
can only prove that your program does the right
thing if it terminates, but not that it terminates.

Figure 1. Power Algorithm in ISABELLE

Example 4.1. The example 2.1 that computes the
positive power of an integer is formalized in the
library HOL-Hoare as shown in Figure 1.

ISABELLE automatically computes the type of
each variable in a term. Despite type inference,
it is sometimes necessary to attach explicit type
constraints to a variable or term. The syntax is
t :: τ as in n :: nat. In our example, we have added
type constraints just to improve readability. The
sequence of apply commands right after the end
of the triple is called a proof script. It is a procedural
low level language that is very useful to explore
initial proof attempts, especially when the proof
depends on a number of additional lemmas. Proof
scripts is a document model for unstructured proofs
and can only be understood if you are playing the
script inside ISABELLE.

After applying the tactic vcg, the proof state in
Figure 2 shows the three verification conditions that
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must be proved (compare 2.2). Applying the auto-
matic proof method auto solves the three goals.
Essentially, auto tries to simplify the subgoals. If
it fails, it leaves to the user simplified versions of
the most difficult cases.

Figure 2. Power Algorithm in ISABELLE - VC’s

In ISABELLE, we have two important meta-level
operators: the universal quantifier

∧
and the impli-

cation =⇒. They are part of the ISABELLE frame-
work, not of the logic HOL. They are used essen-
tially for generality (to express the notion of an
arbitrary value) and judgments or inference rules,
respectively. Thus, the prefix

∧
a b p i means “for

arbitrary a,b, p, i (of appropriate types)”. Right-
arrows of all kinds always associate to the right. An
iterated implication like A1 =⇒ A2 =⇒ . . .=⇒ An
=⇒ B will indicate a proof judgment A1, . . . ,An ` B
with assumptions A1, . . . ,An and conclusion B.

A structured presentation of the reasoning be-
hind the validity of the second verification condition
is formalized with the proof language Isar in Figure
3.

The proof of the whole verification condition
is enclosed in the outermost proof. . .qed delim-
iters. The argument for the proof command is
the verification condition generator. The next three
lines show the typical structure of Isar proofs: fix

Figure 3. Isar proof of power’s second VC

is used to declare arbitrary variables, assume to
state the assumptions and show to assert the goal
of the proof. To improve readability, we intro-
duced an abbreviation, ?INV for the invariant, af-
ter the fix variable declarations. The innermost
proof. . .qed delimiters enclose the actual proof.
The argument − for proof indicates that we are
not applying any proof method or rule to change
the current proof state. The first line breaks the
invariant into subformulas. The subsequent lines
use the simplifier to prove basic arithmetical facts.
The predefined name this can be used to refer
to the proposition proved in the previous step. In
the last step, the unknown ?thesis is matched
against the last declared show.The last show state-
ment proves the actual goal. The auto after the
outermost qed proves automatically the remaining
verification conditions (the first and third).

5. Imperative List Reversal
We can write an imperative program to reverse a list
by repeatedly taking the head of the list and left ap-
pending it to an auxiliary variable that continuously
stores a increasingly bigger prefix of the input list
in a reverse way. Figure 4 presents a Hoare triple
for a program that computes the reversal of a list
according to this idea.

In the precondition, the logical variable X is
used to save the initial value of the program variable

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.92/101 • 2020



Hoare Logic in ISABELLE/HOL

Figure 4. Hoare Triple - List Reversal

xs. In the loop, a new value of the accumulator is
set with the head of the list, left appended to its old
value, while the new list is updated with its tail. The
loop invariant asserts an essential relation between
the program and logical variables during the itera-
tion process: appending the reverse of the current
value of the list with the value of the accumulator
always gives the same result as the reverse of the
initial input list. This invariant is strong enough to
entail the postcondition, which asserts that the final
value of the accumulator holds the reversal of the
input list.

The sequence of apply commands after the
postcondition comprises a proof script in ISABELLE.
This is a procedural language with which the user
can issue commands, tactics and rule applications
that work on the proof state. In this case, after the
application of the verification condition generator,
the proof state looks like this:

The three verification conditions correspond to
the following properties: the invariant is true after
initialization (or before the loop starts), the invari-
ant is maintained by the loop, and the invariant

is strong enough to entail the postcondition. The
three are discharged with automatic proof tactics.
The first with the simplifier, the third with proof
method auto (classical reasoning with simplifica-
tion). The second is solved by another proof tool,
force (classical reasoner with exhaustive proof
search), which is fed with a lemma that states that
every non-empty list can be factored as its head
appended to its tail.

The first verification condition is true by equal-
ity elimination and the fact that the empty list is an
identity with respect to concatenation. The third fol-
lows from the fact that the reverse of an empty list
is empty and because the empty list is an identity
with respect to concatenation. The second follows
from the fact that xs 6= [ ]→ xs= [hd xs]@ tl xs

and the identity rev (as@bs) = rev bs@rev as.
Using the isar proof language, we show a detailed
proof of the second verification condition of the
imperative list reversal in Figure 5.

Figure 5. Structured Proof of 2nd VC

The proof structure is analogous to the one pre-
sented in Figure 3. The proof itself is enclosed
within the innermost proof-qed delimiters. The
first line breaks the compound assumption into its
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two conjuncts. The second line uses the simplifier
to prove that every non-empty list can be factored
as its head followed by its tail. The predefined
name this can be used to refer to the proposi-
tion proved in the previous step. The proof of the
third step follows by congruence of function ap-
plication. The fourth step follows by the theorem
rev(xs@ys) = (rev ys)@(rev xs). The fifth step
follows by transitivity of equality. In the last step,
the unknown ?thesis is matched against the last
declared show. The last show statement proves
the actual goal and it also follows from transitiv-
ity of equality. The auto after the outermost qed
proves automatically the remaining verification con-
ditions (the first and third).

6. Case Study: Insertion Sort
In this section we discuss the validity of a partial
correctness assertion for the insertion sort algorithm.
In the proof triples from Figures 1 and 4, all the aux-
iliary functions we needed to express the algorithm
were already defined in ISABELLE’s standard math-
ematical theory (called Main). For instance, we
used arithmetic functions like addition and multi-
plication for the computation of the positive integer
power. Also, the imperative list reversal algorithm
was written with functions for computing the head
and tail of a list, as well as a function for left ap-
pending an element to a list. The theory Main also
provides a number of lemmas that we used in those
proofs. Proof tactics like simp and auto apply
them automatically. During the explanations, I have
made explicit which lemmas were needed for those
proofs to succeed.

For the insertion sort algorithm, besides basic
facts about lists, which are already available to us
in Main, we also need to define a few other ones,
as well as prove essential relationships amongst
them. We first introduce some auxiliary functions
and related lemmas before we proceed with the
proof of the triple itself. These functions are defined
with the functional language of ISABELLE, which
resembles a lot ML [18] and Haskell [19]. In Figure
6 we show the basic functions for our development.

Figure 6. Functions for Insertion Sort

The function ins inserts an element at the right
position in a ordered list. Several of these function
declarations have the restriction ′a :: linorder on
the type variable ′a. The polymorphism is restricted
to the types which are instances of the type class
linorder, i.e., only to those types which can pro-
vide an ordering predicate that satisfy the axioms of
a total order, i.e., a partial order in which every pair
of elements can be compared. The introduction of
type classes in ISABELLE was strongly influenced
by the analogous concept in the programming lan-
guage Haskell [19, 20]. The funcion iSort
returns a sorted list by repeated application of the
function ins. The function le receives an element
and a list and returns True if and only if the ele-
ment is the least element in the list. The number of
occurrences of an element in a list is computed by
count. The isorted function states that a list is
sorted if and only if every element is the least when
compared to all its successors.

The Hoare triple for insertion sort is shown in
Figure 7. It states that for every arbitrary input list
X , if the program terminates, then the output list ys
is sorted and it is also a permutation of the input list
X . X is a logical variable used to record the input
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value for the program variable xs. We consider two
lists a permutation of one another if they have the
same length and the same number of occurrences
of elements for each list element.

Figure 7. Hoare Triple - Insertion Sort

To help ISABELLE in proving this triple we need
a small set of properties related to the functions for
insertion sort defined earlier. They are show in
Figure 8 and are proved by induction.

Figure 8. Insertion Sort Lemmas

The informal meaning of these lemmas can be
understood as follows:le ins states if a certain
value precedes all elements of a list and also pre-
cedes another value a, then it also precedes all
the elements of the list which includes a. Lemma
le mon says that the function λw. le w xs is mono-
tonic w.r.t. to the order relation. Proposition ins sorted
asserts that the insert function preserves sortedness,
while is sorted claims that insertion sort always
returns a sorted list. Lemma ins count asserts

that counting is compatible with insertion of new el-
ements, and count sum proves that counting the
number of occurrences is compatible with concate-
nation of lists. Proposition len sort says that the
length of an input list is invariant under insertion
sort, while count isort affirm that the number
of occurrences of elements is invariant under sort-
ing. Finally, ins len states that the lenght of list
is compatible with insertion of new elements.

ISABELLE’s auto tactic can be very handy in
helping the user discover what are the missing lem-
mas that must be proved, since auto solves the
easy stuff and leaves the harder ones for the user to
figure out. A introductory exercise that discusses
how we can discover the right lemmas can be found
in [5], chapter 2. After calling the verification con-
dition generator we are left with the following proof
goals:

The first and third verification condition are eas-
ily seen to be true. The first because every empty
list is sorted by definition, the empty list [ ] is neu-
tral with respect to concatenation, and by equality
elimination, every list is a permutation of itself. The
third because the assumption ¬xs 6= [ ] is equivalent
to xs = [ ]. Then the conclusion follows by equality
elimination and for the fact that the empty list [ ]
is neutral with respect to concatenation. The sec-
ond verification condition seems the real challenge,
specially for the second conjunct. Because two of
the three verification conditions are trivial, we can
try to prove everything automatically with apply
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(auto simp add:is perm def). However,
auto does not solve the second subgoal and gener-
ates three new subgoals.

We introduce here another ISABELLE powerful
too for theorem proving, called SLEDGEHAMMER.
SLEDGEHAMMER [21] is ISABELLE’s subsystem
for harnessing the power of first-order automatic
theorem provers. Given a conjecture, it heuristi-
cally selects a few hundred relevant facts (lemmas,
definitions, or axioms) from ISABELLE’s libraries,
translates them to first-order logic along with the
conjecture, and delegates the proof search to exter-
nal resolution provers like E, SPASS and vampire
[22, 23, 24] and SMT solvers like CVC4 and Z3
[25, 26].

A proof script that solves the three goals is
shown bellow.

Because two of the three verification conditions
are trivial, we try to prove everything automatically
applying (auto simp add:is perm def).
However, auto does not solve the second subgoal
and generates three new subgoals. These new sub-
goals are solved by the three (indented) subsequent
invocations of apply discovered by SLEDGEHAM-
MER (lines 1.1, 1.2 and 1.3). Note the inclusion of
lemmas in the simplifier set.There are some impor-
tant observations about this proof script:

1. Proof scripts cannot be understood unless you
are playing the proof yourself in ISABELLE.

2. The tactic auto works on all subgoals si-
multaneously and fails to solve them com-
pletely. As a proof draft, it is acceptable, but

it should never be used like this in a final ver-
sion. It’s perfectly fine, however, when auto
solves its goals completely, e.g. as terminal
proof method, which it is not the case above.

3. Even if we come up with another proof script
that avoids the aforementioned issues, we
would still not know the explanation, the rea-
soning that justifies why the partial correct-
ness assertion is valid. A structured proof
should always be the final, polished docu-
mentation of a formally verified reasoning in
ISABELLE.

Figure 9. Insertion Sort - Proof Draft

A high-level, human-readable proof may be de-
sired or even essential if we want to communicate
our reasoning so that users and readers can properly
appreciate and understand the logical entailments
underlying a particular program or algorithm. So
we proceed now with a structure proof of the sec-
ond verification condition, i.e., with the proof that
the invariant is maintained by the loop. A proof
sketch with the proof language Isar for this goal is
shown in Figure 9. In the proof draft we see that
the outermost structure is of a conjunction. The
command sorry means by cheating. This
method solves its goal without actually proving it
and indicate that this step must later be refined with
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a real proof. It is a fake proof pretending to solve
the pending claim without further ado.

We must be very careful, though: every time
we use sorry, we are leaving a door open for to-
tal nonsense to enter ISABELLE’s nice, rigorous,
formally checked environment! However, if used
wisely, this approach can be very helpful for top-
down development of structured proofs. The com-
mand rule conjI applies the natural deduction
rule for conjunction introduction to the proof goal
stated in the outermost show command. The aux-
iliary propositions labeled pg1,pg2 state the two
necessary conditions to prove that the loop main-
tains the property that the two lists are a permuta-
tion of one another. The command auto simp
add:is perm def after the outermost qed solves
automatically the remaining goals, i.e., the first and
third verification conditions.

Figure 10. Insertion Sort - Structured Proof

In Figure 10 we formalize in Isar the first part of
the proof, in very small reasoning steps. The whole

proof itself is somehow long, but it carries detailed
explanations of why the algorithm works.

This proof uses a special Isar construct to write
proofs in the calculation style, i.e, when the steps
are a chain of equations or inequations. The three
dots is the name of an unknown that Isar auto-
matically instantiates with the right-hand side of
the previous equation. There is an Isar theorem
variable called calculation, similar to this
(remember that this variable holds the proposi-
tion proved in the previous step). When the first
also in a chain is encountered, ISABELLE sets
calculation := this. In each subsequent
also step, it composes the theorems calcula-
tion and this (i.e. the two previous equations)
using transitivity of equality. The command final-
ly is a shorthand for also from calcula-
tion. Thus, in the finally step, the chain of
equations is closed with respect to the transitiv-
ity rule and it is stored in the variable calcu-
lation. The unknown ?thesis is implicitly
matched against the assertion stated by the previous
have command.

7. Verification Tools for Hoare
Logic & Programs with Assertions
In section 1 I have referenced a number of inter-
active proof assistants and verification tools with
which one can mechanize and automate reasoning
about Hoare Logic and, in more generality, about
imperative programs with assertions. Here I in-
clude a brief discussion about two of these related
approaches.

7.1 COQ

COQ [6, 7] is an interactive theorem prover along
the same lines as ISABELLE. It allows the ex-
pression of mathematical assertions, mechanically
checks proofs of these assertions, helps to find for-
mal proofs, and extracts a certified program from
the constructive proof of its formal specification. A
solid implementation of Hoare Logic in COQ can
be found in the first two volumes of the classic Soft-
ware Foundation series [27, 28]. The development
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is analogous to the one done in ISABELLE:

1. Formalization of the programming language
syntax.

2. Formalization of the programming language
semantics via an inductive relation (big-step
operational semantics).

3. Formalization of proof rules as theorems with
respect to the semantics.

4. Computation of verification conditions of an-
notated programs

5. Proof of verification conditions using interac-
tive or automatic tactics (proof procedures).

As an example, consider the simple algorithm
for slow subtraction bellow, taken from [27]:

In this formalization of Hoare logic we have
some limitations:

• Reasoning is limited to imperative programs
that compute over natural numbers.

• The programs must be decorated. Concretely,
a decorated program consists of the program
text interleaved with assertions (either a sin-
gle assertion or possibly two assertions sepa-
rated by an implication).

• Assertions must be encoded as semantic func-
tions using lambda abstractions.

As a comparison, the same solution written in IS-
ABELLE is shown below:

7.2 DAPHNY

DAFNY is an automated verification aware program-
ming language meant to aid software engineers in
the design of correct programs. Behind the scenes,
DAFNY first converts code into the mathematical
expressions of Hoare logic with the aid of a interme-
diate language called Boogie [29], and then it sends
the code to the theorem prover Z3 [25]. Two of
the most fundamental annotations in DAFNY are the
preconditions and postconditions. In the program-
ming language, preconditions are expressed with
the keyword requires, and postconditions with the
keyword ensures. Another fundamental annotation
in DAFNY is the loop invariant. Loop invariants,
given with an invariant statement, are expressions
that must hold true before the initialization of the
loop, throughout all iterations, and upon termina-
tion. At the end of the loop, invariants also pro-
vide information that assist in verifying the overall
method and the postconditions. Invariants are of-
ten restatements of the postconditions in terms of
intermediate variables, and by outlining these steps,
DAFNY is able to verify that these statements which
hold constant for the duration of the loop, imply the
postcondition. DAFNY also proves program termi-
nation, i.e., that it does not loop forever, by using
decreases annotations to formalize loop variants.
Loop variants are athematical functions defined on
the state space of a computer program whose value
is monotonically decreased with respect to a well-
founded relation by the iteration of a while loop
under some invariant conditions. The slow subtrac-
tion example introduced above can be formalized
in DAFNY as in Figure 11:
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Figure 11. Slow subtraction in Daphny

DAFNY offers features from both imperative pro-
gramming (assignments, loops, and classes with dy-
namically allocated instances) and functional pro-
gramming (algebraic datatypes and functions). The
DAFNY verifier runs continuously and whenever it
cannot verify a proof obligation, it flags it as an er-
ror, much like a word processor immediately marks
dubious spelling or grammar.

Author contributions

Programmers and software developers alike often
see the subject of Hoare Logic as a tedious and im-
practical reasoning tool, despite being a key founda-
tion of program verification. Thus it is essential to
present them with modern tools that improve appli-
cation as well as teaching of this essential concept
for program and algorithm verification.

The implementation of Hoare logic that comes
with the standard distribution of the ISABELLE pro-
vides a standard syntax to declare Hoare triples and
supports a varied set of proof tactics for proof con-
struction and automation. Moreover, the user can
write programs over a rich collection of data types
which are formalized in higher order logic.

In this article I have tried to convey a detailed
and accessible presentation to several techniques
available for reasoning with Hoare Logic in the

proof assistant ISABELLE within a certain proof
methodology:

1. Construction of proofs using procedural proof
scripts that discharge the verification condi-
tions using the several automatic proof proce-
dures available in ISABELLE: simp, auto,
force, blast and fastforce.

2. If the previous step fails to discharge some
of the verification conditions, the user can
invoke SLEDGEHAMMER to see if it discovers
a proof for each undischarged verification
condition.

3. Above all, is strongly advised writing a struc-
tured proof using the proof language Isar,
using intermediate steps and auxiliary lem-
mas as needed, in order to break down the
complexity of the task.

In the last step, a proof draft like the one in Fig-
ure 9 can be very adequate as an proof scheme or
proof draft. It is also helpful to realize that new aux-
iliary lemmas must be stated and proved, e.g. like
the ones in Figure 8. Using the proof tactic auto
with proof scripts is always a effective approach to
realize what are the missing theorems.

Despite ISABELLE’s varied and sophisticated
tools for proof automation, being able to construct
structured, human-readable reasoning about pro-
gram code is fundamental to communicate ideas
properly. It is also a craft that is important to learn
and develop, not only to tackle more complex cases
but also to understand properly the subtle logical
behavior of more sophisticated algorithms and pro-
grams.

Therefore, I have emphasized through all the
examples in the paper, that the use of the proof
language Isar for documentation, reasoning, and
especially communication at a high-level, is essen-
tial. A structured proof should always be the final,
polished documentation of a formally verified rea-
soning in ISABELLE.
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