
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 27, Num. 3 (2020) 13-24

RESEARCH ARTICLE

A Mechanized Proof of a Textbook Type Unification
Algorithm
Uma prova de correção formalmente verificada de um algoritmo de unificação de tipos

Maycon Amaro1, Rodrigo Ribeiro1*, André Rauber Du Bois2

Abstract: Unification is the core of type inference algorithms for modern functional programming languages, like
Haskell and SML. As a first step towards a formalization of a type inference algorithm for such programming
languages, we present a formalization in Coq of a type unification algorithm that follows classic algorithms
presented in programming language textbooks. We also report on the use of such formalization to build a correct
type inference algorithm for the simply typed λ -calculus.
Keywords: Unification — Type Inference — Coq proof assistant

Resumo: A unificação é um componente central de algoritmos de inferência de tipos presentes em linguagens
funcionais modernas, como Haskell e SML. Esse trabalho relata os primeiros passos em direção a formalização,
usando o assistente de provas Coq, de um algoritmo de inferência de tipos conforme este é apresentado
em livros texto da área de linguagens de programação. A partir do algoritmo formalizado, descrevemos uma
implementação de um algoritmo de inferência de tipos para o λ -cálculo simplesmente tipado.
Palavras-Chave: Unificação — Inferência de tipos — Assistente de provas Coq

1Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
2Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
*Corresponding author: rodrigo.ribeiro@ufop.edu.br
DOI: https://doi.org/10.22456/2175-2745.100968 • Received: 10/03/2020 • Accepted: 28/04/2020
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction
Modern functional programming languages like Haskell [1]
and SML [2] allows programmers to write program texts
without requiring programmers to write type annotations in
programs. Compilers for these languages can discover missing
type information through a process called type inference [3].

Type inference algorithms are usually divided into two
components: constraint generation and constraint solving [4].
For languages that use ML-style (or parametric) polymor-
phism, constraint solving reduces to first order unification.

A sound and complete algorithm for first order unifica-
tion is due to Robinson [5]. The soundness and completeness
proofs have a constructive nature, and can thus be formalized
in proof assistant systems based on type theory, like Coq [6]
and Agda [7]. Formalizations of unification have been re-
ported before in the literature [8, 9, 10, 11], using different
proof assistants, but none of them follows the style of textbook
proofs (cf. e.g. [12, 13]).

As a first step towards a full formalization of a type in-
ference algorithm for Haskell, in this article, we describe
an axiom-free formalization of type unification in the Coq
proof assistant, that follows classic algorithms on type sys-

tems for programming languages [12, 13]. The formalization
is “axiom-free” because it does not depend on axioms like
function extensionality, proof irrelevance or the law of the
excluded middle, i.e. our results are integrally proven in Coq.

More specifically, our contributions are:

1. A mechanization of a termination proof, as described in
e.g. [12, 13]. These textbook proofs are referred to as
“straightforward”. In our formalization, it was necessary
to decompose the proof in several lemmas in order to
convince Coq’s termination checker.

2. A correct by construction formalization of unification.
In our formalization the unification function has a de-
pendent type that specifies that unification produces
either the most general unifier of a given set of equal-
ity constraints or a proof that explains why this set of
equalities does not have a unifier (i.e. our unification
definition is a view [14] on lists of equality constraints).

3. We use the developed formalization to certify a type
inference algorithm for the simply typed λ -calculus
(STLC) in Coq. The type inference algorithm is con-
structed by combining constraint generation and con-
straint solving (unification). We also use Coq extraction

feature to produce a Haskell implementation of the for-
malized type inference algorithm.

We chose Coq to develop this formalization because it
is an industrial strength proof assistant that has been used in
several large scale projects such as a Certified C compiler [15]
and a Java Card platform [16], as well as on the verification
of mathematical theorems (cf. e.g. [17, 18]).

This paper extends previous work [19] mainly by (1) defin-
ing a correct constraint-based type inference algorithm for
STLC by combining a constraint generator with the previ-
ously formalized unification algorithm, and (2) producing a
Haskell implementation of type inference for STLC from our
Coq formalization.

The rest of this paper is organized as follows. Section 2
presents a brief introduction to the Coq proof assistant. Sec-
tion 3 presents some definitions used in the formalization.
Section 4 presents the unification algorithm. Termination,
soundness and completeness proofs are described in Sections
4.1 and 4.2, respectively. Section 5 presents details about
proof automation techniques used in our formalization. Sec-
tion 6 reports on our efforts on using the formalized algorithm
in the implementation of a type inference algorithm. Section
7 presents related work and Section 8 concludes.

While all the code on which this paper is based has been
developed in Coq, we adopt a “lighter” syntax in the pre-
sentation of its code fragments. In the introductory Section
2, however, we present small Coq source code pieces. We
chose this presentation style in order to improve readability,
because functions that use dependently typed pattern match-
ing require a high number of type annotations, that would
deviate from our objective of providing a formalization that is
easy to understand.

For theorems and lemmas, we sketch the proof strategy
but omit tactic scripts. The developed formalization uses Coq
version 8.5pl2 and it is available online [20].

2. A Taste of Coq Proof Assistant
Coq is a proof assistant based on the calculus of inductive
constructions (CIC) [6], a higher order typed λ -calculus ex-
tended with inductive definitions. Theorem proving in Coq
follows the ideas of the so-called “BHK-correspondence”1,
where types represent logical formulas, λ -terms represent
proofs [21] and the task of checking if a piece of text is a
proof of a given formula corresponds to checking if the term
that represents the proof has the type corresponding to the
given formula.

However, writing a proof term whose type is that of a
logical formula can be a hard task, even for very simple propo-
sitions. In order to make the writing of complex proofs easier,
Coq provides tactics, which are commands that can make it
easier to construct proof terms.

1Abbreviation of Brouwer, Heyting, Kolmogorov, de Bruijn and Martin-
Löf Correspondence. This is also known as the Curry-Howard “isomor-
phism”.

As a tiny example, consider the task of proving the follow-
ing simple formula of propositional logic:

(A→ B)→ (B→C)→ A→C

In Coq, such theorem can be expressed as:

Section EXAMPLE.
Variables A B C : Prop.
Theorem ex : (A -> B) -> (B -> C) -> A -> C.
Proof.

intros H H’ HA.
apply H’.
apply H.
assumption.

Qed.
End EXAMPLE.

In the previous source code piece, we have defined a Coq sec-
tion named EXAMPLE2 which declares variables A, B and C
as being propositions (i.e. with type Prop). Tactic intros
introduces variables H, H’ and HA into the (typing) context,
respectively with types A -> B, B -> C and A and leaves
goal C to be proved. Tactic apply, used with a term t, gen-
erates goal P when there exists t: P -> Q in the typing
context and the current goal is Q. Thus, apply H’ changes
the goal from C to B and apply H changes the goal to A.
Tactic assumption traverses the typing context to find a
hypothesis that matches with the goal.

We define next a proof of the previous propositional log-
ical formula that, instead of using tactics (intros, apply
and assumption), is coded directly as a function:

Definition example’
: (A -> B) -> (B -> C) -> A -> C :=
fun (H : A -> B)

(H’ : B -> C)
(HA : A) => H’ (H HA).

However, even for very simple theorems, coding a definition
directly as a Coq term can be a hard task. Because of this,
the use of tactics has become the standard way of proving
theorems in Coq. Furthermore, the Coq proof assistant pro-
vides not only a great number of tactics but also a domain
specific language for scripted proof automation, called L tac.
In this work, the developed proofs follow the style, advocated
by e.g. Chlipala [22], where most proofs are built using L tac
scripts, to automate proof steps and make them more robust.
Details about L tac can be found in [22, 6].

Another feature of Coq is the so-called extraction [23],
which generates data types and functions in Haskell, OCaml
and Scheme, from a Coq formalization by erasing all values
whose types are in Prop universe. As an example of this
feature, consider the following Coq source code piece, which
defines a certified predecessor function for natural numbers in
Peano notation:

After defining inductive type nat, we declare function
pred, which returns the predecessor of a given natural num-
ber together with a evidence that the returned value is indeed
the predecessor of input value or a proof that such input is

2In Coq, sections can be used to delimit the scope of local variables.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.14/24 • 2020

Section PRED.

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Definition pred (n : nat)
: {m | n = S m} + {n = O}.

exact (match n as n’
return {m | n’ = S m} + {n’ = O} with

| O => inright eq_refl
| S m => inleft _ (exist _ m eq_refl)
end).

Defined.
End PRED.
Extraction Language Haskell.
Extract Inductive sumor =>

"Maybe" ["Just" "Nothing"].
Recursive Extraction pred.

Figure 1. Simple verified predecessor function and its
extraction commands

equal to zero. This type is specified using type constructors
sig and sumor. Type constructor sig can be understood
as an existential quantifier3, since its value constructor

exist : forall x : A, P x -> sig P

receives a witness x and a proof that this value satisfies
a property (P). Notation {x : A | P x} represents type
sig (fun x : A => P). For a type A : Type and
a proposition B : Prop, inductive type sumor A B rep-
resents values of type A or proofs of B and Coq’s standard
library defines it with the following notation: A + {B}. The
type of pred uses sig to guarantee that the returned value
is the predecessor of input n, i.e. {m | n = S m}, and
|sumor— to combine it with the type of a proof that input n
is equal to zero (i.e. n = O).

Function pred is declared using tactic exact which
allows direct specification of a term. Definition of pred is as
follows: If n = O, we return a proof that n = 0, denoted
by term inright eq_refl; otherwise, we have that n
= S m and we return m as n’s predecessor together with a
proof of this fact. Both cases uses constructor eq_refl that
represents propositional equality proofs and it has the type

eq_refl : forall {A : Type}{x : A}, x = x

By default, Coq extracts code to OCaml but, we can con-
figure it to produce Haskell or Scheme code using command
Extraction Language. Also we can customize extrac-
tion to modify how functions and data types are extracted. As
an example of this feature, in Figure 1, we use command:

Extract Inductive sumor =>
"Maybe" ["Just" "Nothing"].

3The main difference between an inductive type constructed with sig
and the one constructed with an existential quantifier (ex) is that the former
survives program extraction, since extraction only remove values whose type
is a propostion (universe Prop).

to extract sumor type to Haskell’s Maybe. Using this com-
mand, Coq does not create a Haskell type for sumor and
maps its first constructor to Just and the second to Nothing.
Such customizations must be done with care, since they could
introduce unexpected behaviour, if we don’t pay attention to
constructor order [24].

Haskell code extracted from Figure 1 is shown in Figure 2.

module Main where

import qualified Prelude

type Sig a = a
-- singleton inductive,
-- whose constructor was exist

data Nat = O | S Nat

pred :: Nat -> Maybe Nat
pred n =

case n of {
O -> Nothing;
S m -> Just m}

Figure 2. Extracted Haskell code from Figure 1.

3. Definitions
3.1 Terms
Following common practice, we consider the following syntax
for λ -terms, where meta-variable x denotes (term) variables:

e ::= x | λx.e | e e | c

Our syntax only consider just one constant value, c, of
type C. We use a term representation that is based on names to
represent variable binding. Usage of binding representations
(like De Bruijn indexes, locally nameless representation or
parametric high-order abstract syntax [25, 26]) is orthogonal
to our work, since our focus is on type inference and not on
semantics, where capture free (term) substitutions do not play
an important role.

3.2 Types
We consider a language of simple types formed by type vari-
ables, type constants (also called type constructors) and func-
tional types given by the following grammar:

τ ::= α | C | τ → τ

where α stands for a type variable and C is a type constructor.
All meta-variables (τ,α) can appear primed or subscripted
and, as usual, we consider that→ associates to the right and
represent type variable names as natural numbers.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.15/24 • 2020

The list of type variables within type τ is denoted by
FV(τ) and its definition is straightforward.

The size of a given type τ , given by the number of arrows,
type variables and constructors in τ , is denoted by size(τ).
Formally:

size(τ1→ τ2) = 1+ size(τ1)+ size(τ2)
size(α) = 1
size(C) = 1

We let τ1
e
= τ2 denote the equality constraint between two

types τ1 and τ2.
Lists of equality constraints are represented by meta-variable

C. We use the left-associative operator :: for constructing lists:
a :: x denotes the list formed by head a and tail x. Also, we
follow Haskell notation and represent singleton list containing
x by [x].

The definition of free type variables for constraints and
their lists are defined in a standard way and the size of con-
straints and constraint lists are defined as the sum of their
constituent types. The following simple lemmas will be later
used to establish termination of the unification algorithm, de-
fined in Section 4.

Lemma 1. For all types τ1,τ
′
1,τ2,τ

′
2 and all lists of con-

straints C we have that:

size((τ1
e
= τ
′
1) :: (τ2

e
= τ
′
2) ::C)< size((τ1→ τ2

e
= τ
′
1→ τ

′
2) ::C)

Proof. Induction over C using the definition of size.

Lemma 2. For all types τ,τ ′ and all lists of constraints C we
have that

size(C)< size((τ e
= τ

′) :: C)

Proof. Induction over τ and case analysis over τ ′, using the
definition of size.

3.3 Substitutions
Substitutions are functions mapping type variables to types.
For convenience, a substitution is considered as a finite map-
ping [α1 7→ τ1, ...,αn 7→ τn], for i = 1, . . . ,n, which is also
abbreviated as [α 7→ τ] (α and τ denoting sequences built
from sets {α1, ...,αn} and {τ1, ...,τn}, respectively). Meta-
variable S is used to denote substitutions.

In our formalization, a mapping [α 7→ τ] is represented as
a pair of a variable and a type. Substitutions are represented as
lists of mappings, taking advantage of the fact that a variable
never appears twice in a substitution.

There are other possible representations for substitutions
(e.g. finite maps implemented as red-black trees). We chose
to represent them as lists to ease the task automating proofs
by scripting custom tactics. Coq standard library provides
several containers (finite-maps, finite-sets, etc) implemented
as balanced-tree structures. However, since the Coq library
relies on modules, the finite map structure is hidden from

the client users which would add unnecessary complexity on
proof automation by inspecting substitution’s structure.

The domain of a sub stitution, denoted by dom(S), is
defined as:

dom(S) = {α |S(α) = τ,α 6= τ}

Following [10], we define substitution application in a
variable-by-variable way; first, let the application of a map-
ping [α 7→ τ ′] to τ be defined by recursion over the structure
of τ:

[α 7→ τ ′] (τ1→ τ2) = ([α 7→ τ ′] τ1)→ ([α 7→ τ ′] τ2)
[α 7→ τ ′]α = τ ′

[α 7→ α ′]α = α ′, if α ′ 6= α

[α 7→ α ′]C = C

Next, substitution application follows by recursion on
the number of mappings of the substitution, using the above
defined application of a single mapping:

S(τ) =
{

τ if S = []
S′([α 7→ τ ′] τ) if S = [α 7→ τ ′] :: S′

Application of a substitution to an equality constraint is
defined in a straightfoward way:

S (τ e
= τ

′) = S(τ) e
= S(τ ′)

In order to maintain our development on a fully construc-
tive ground, we use the following lemma, to cater for proofs
of equality of substitutions. This lemma is used to prove that
the result of the unification algorithm yields the most general
unifier of a given set of types.

Lemma 3. For all substitutions S and S′, if S(α) = S′(α) for
all variables α , then S(τ) = S′(τ) for all types τ .

Proof. Induction over τ , using the definition of substitution
application.

3.4 Type System
In order to formalize a type inference algorithm for STLC, we
need to define its type system. Following standard practice,
we let meta-variable Γ denote typing contexts. We also define
the following operations on typing contexts:

Γ,x : τ = (Γ−{x : τ ′ ∈ Γ})∪{x : τ}
Γ(x) = τ, if x : τ ∈ Γ

We let symbol /0 denote the empty typing context. Application
of substitutions on typing contexts is straightforwardly defined
by recursion using application of substitution on types. We
represent substitution application on types and typing contexts
using the same notation.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.16/24 • 2020

The type system is presented as a syntax directed proof
system for judgements Γ ` e : τ which means that term e has
type τ using information in typing context Γ.

Γ ` c : C
(Const)

Γ(x) = τ

Γ ` x : τ
(Var)

Γ,x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(Abs)

Γ ` e1 : τ ′→ τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ
(App)

In order to ensure that type inference is sound w.r.t. STLC
type system, we need to show that derivability is preserved by
type substitutions. This is ensured by the next theorem.

Theorem 1. Let Γ be a typing context, e a term and τ a type
such that Γ ` e : τ . Then, for every substitution S, we have
that S(Γ) ` e : S (τ).

Proof. By induction over the derivation of Γ ` e : τ .

3.5 Well-Formedness Conditions
Now, we consider notions of well-formedness with regard to
types, typing contexts, substitutions and constraints. These no-
tions are crucial to give simple proofs for termination, sound-
ness and completeness of the unification algorithm.

Well-formed conditions are expressed in terms of a type
variable context, V , that contains, in each step of the execution
of the unification algorithm, the complement of the set of type
variables that are in the domain of the unifier. This context is
used to formalize some notions that are assumed as immediate
facts in textbooks, like: “at each recursive call of the unifica-
tion algorithm, the number of distinct type variables occurring
in constraints decreases” or “after applying a substitution S to
a given type τ , we have that FV (S(τ))∩dom(S) = /0”.

We consider that:

• A type τ is well-formed in V , written as wf (V ,τ), if
all type variables that occur in τ are in V .

• A constraint τ1
e
= τ2 is well-formed in V , written as

wf (V ,τ1
e
= τ2), if both τ1 and τ2 are well-formed in V .

• A list of constraints C is well-formed in V , written
as wf (V ,C), if all of its equality constraints are well-
formed in V .

• A typing context Γ is well-formed in V , written as
wf (V ,Γ), if for all x : τ ∈ Γ, we have wf (V ,τ).

• A substitution S is well-formed in V , written as wf (V ,S),
if either S = [] or, if S = {[α 7→ τ]} :: S′, the following
conditions apply:

– α ∈ V

– wf (V −{α},τ)
– wf (V −{α},S′)

The requirement that type τ is well-formed in V −{α} is
necessary in order for [α 7→ τ] to be a well-formed substitution.
This avoids cyclic equalities that would introduce infinite type
expressions.

The well-formedness conditions are defined as recursive
Coq functions that compute dependent types from a given
variable context and a type, constraint or substitution.

A first application of these well-formedness conditions
is to enable a simple definition of composition of substitu-
tions. Let S1 and S2 be substitutions such that wf (V ,S1) and
wf (V −dom(S1),S2). The composition S2 ◦S1 can be defined
simply as the append operation of these substitutions:

S2 ◦S1 = S1 ++S2

The idea of indexing substitutions by type variables that can
appear in its domain and its use to give a simple definition of
composition was proposed in [10].

We say that a substitution S is more general than S′, written
as S≤ S′, if there exists a substitution S1 such that S′ = S1 ◦S.

The definition of composition of substitutions satisfies the
following theorem:

Theorem 2 (Substitution Composition and Application). For
all types τ and all substitutions S1, S2 such that wf (V ,S1) and
wf (V −dom(S1),S2) we have that (S2 ◦S1)(τ) = S2(S1(τ)).

Proof. By induction over the structure of S2.

3.6 Occurs Check
Type unification algorithms use a well-known occurs check
in order to avoid the generation of cyclic mappings in a sub-
stitution, like [α 7→ α → α]. In the context of finite type
expressions, cyclic mappings do not make sense. In order
to define the occurs check, we first define a dependent type,
occurs(α,τ), that is inhabited4 only if α ∈ FV(τ):

occurs(α,τ1→ τ2) = occurs(α,τ1)∨occurs(α,τ2)
occurs(α,α ′) = α ′ 6= α

occurs(α,C) = False

Coq type False is the and empty type5, respectively.
Note that occurs(α,τ) is provable if and only if α ∈ FV(τ).

Using type occurs, decidability of the occurs check can
be established, by using the following theorem:

Lemma 4 (Decidability of occurs check). For all variables α

and all types τ , we have that either occurs(α,τ) or¬occurs(α,τ)
holds.

4According to the BHK-correspondence, a type is inhabited only if it
represents a logic proposition that is provable.

5In type theory terminology, the unit type is a type that has a unique
inhabitant and the empty type is a type that does not have inhabitants. Un-
der BHK-correspondence, they correspond to a true and false propositions,
respectively [21].

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.17/24 • 2020

Proof. Induction over the structure of τ .

If a variable α does not occur in a well-formed type, this
type is well-formed in a variable context where α does not
occur. This simple fact is an important step used to prove
termination of unification. The next lemmas formalize this
notion.

Lemma 5. For all variables α1,α2 and all variable contexts
V , if α1 ∈ V and α2 6= α1 then α1 ∈ (V −{α2}).

Proof. Induction over V .

Lemma 6. Let τ be a well-formed type in a variable context
V and let α be a variable such that ¬occurs(α,τ). Then τ is
well-formed in V −{α}.

Proof. Induction on the structure of τ , using Lemma 5 in the
variable case.

3.7 Constraint Generation
The type inference algorithm for STLC is due to Hindley [27].
Essentially, the algorithm uses the fact that the type system
for STLC is syntax-directed, i.e. the syntactic structure of a
well-typed term uniquely determines which type rule should
be applied to produce a valid typing derivation. Hindley’s idea
is that each term induces a candidate type derivation, where
all missing types consist of distinct type variables. In order
for the candidate derivation to be considered as a valid type
derivation, all of its type variables must be instantiated to a
ground type6, subject to equality constraints.

Constraint generation is a simple recursive procedure that
produces a list of constraints, from a given candidate typing
derivation. An algorithm for generating constraints for STLC
is presented next in Figure 3.

〈〈Γ ` c : τ〉〉 = [τ
e
=C]

〈〈Γ ` x : τ〉〉 = [Γ(x) e
= τ]

〈〈Γ ` λx.e : τ〉〉 = τ
e
= α1→ α2 :: 〈〈Γ,x : α1 ` e : α2〉〉

where α1,α2 are fresh
〈〈Γ ` e1 e2 : τ〉〉 = 〈〈Γ ` e1 : α → τ〉〉++〈〈Γ ` e2 : α〉〉

where α is fresh

Figure 3. Constraint generation algorithm.

We implement constraint generation using a simple state
monad to store a list of used type variables names (i.e. it stores
the variable context V) and a natural number that denotes the
next fresh variable name to be used by the algorithm.

The next lemma shows that if we call constraint generation
on a well-formed typing context for a given term, it produces
a well-formed constraint. It it is crucial to establish type
inference soundness.

6We say that a type τ is ground if FV(τ) = /0.

Lemma 7. Let e be an term, V a variable context and Γ

a typing context such that wf (V ,Γ) holds. If 〈〈Γ ` e : α〉〉
succeds then wf (V ,〈〈Γ ` e : α〉〉) holds.

Proof. By structural induction on e.

4. The Unification Algorithm

We use the following standard presentation of the first-order
unification algorithm, where τ ≡ τ ′ denotes a decidable equal-
ity test between τ and τ ′:

(1) unify([]) = []

(2) unify((α e
= α) :: C) = unify(C)

(3) unify((α e
= τ) :: C) = if occurs(α,τ) then fail

else unify([α 7→ τ]C)◦ [α 7→ τ]

(4) unify((τ e
= α) :: C) = if occurs(α,τ) then fail

else unify([α 7→ τ]C)◦ [α 7→ τ]

(5) unify((τ1→ τ2
e
= τ → τ ′) :: C) =

unify((τ1
e
= τ) :: (τ2

e
= τ ′) :: C)

(6) unify((τ e
= τ ′) :: C) = if τ ≡ τ ′ then unify(C)

else fail

Figure 4. Unification algorithm.

Our formalization differs from the presented algorithm
(Figure 4) in two aspects:

1. Since this presentation of the unification algorithm is
general recursive, i.e. there are recursive calls that are
not made on structurally smaller arguments, we need
to define it using recursion on proofs that unify’s argu-
ments form a well-founded relation [6].

2. Instead of returning just a substitution that represents
the argument constraint unifier, we return a proof that
such substitution is indeed its most general unifier or a
proof explaining that such unifier does not exist, when
unify fails.

These two aspects are discussed in Sections 4.1 and 4.2,
respectively.

It is worth mentioning that there are some Coq exten-
sions that make the definitions of general recursive functions
and functions defined by pattern matching on dependent types
easier, namely commands Function and Program, respec-
tively. However, according to the Coq reference manual [28],
these are experimental extensions. Thus, we prefer to use
well established approaches to overcome these problems: 1)
use of a recursion principle derived from the definition of a
well-founded relation [6] and 2) annotate every pattern match-
ing construct in order to make explicit the relation between
function argument and return types.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.18/24 • 2020

4.1 Termination Proof
For any list of equalities the unification algorithm always
terminates, either by returning their most general unifier or by
establishing that there is no unifier. The termination argument
uses a notion of degree of a list of constraints C, written as
|C|, defined as a pair (m,n), where m is the number of distinct
type variables in C and n is the total size of the types in C. We
let (m,n)≺ (m′,n′) denote the usual lexicographic ordering
of degrees.

Textbooks usually consider it straightforward that each
clause of the unification algorithm either terminates (with
success or failure) or else make a recursive call with a list of
constraints that has a lexicographically smaller degree. Since
the implemented unification function is defined by recursion
over proofs of lexicographic ordering of degrees, we must
ensure that all recursive calls are made on smaller lists of
constraints. In lines 3 and 4 of Figure 4, the recursive calls are
made on a list of constraints of smaller degree, because the
list of constraints [α 7→ τ]C will decrease by one the number
of type variables occurring in it. This is formalized in the
following lemma:

Lemma 8 (Substitution application decreases degree). For
all variables α ∈ V , all well-formed types τ and well-formed
lists of constraints C, it holds that

|[α 7→ τ]C| ≺ |(α e
= τ) :: C|

Proof. Induction over C.

On line 5 of Figure 4, we have that the recursive call is
made on a constraint that has more equalities than the original
but has a smaller degree, as shown by the following lemma.

Lemma 9 (Fewer arrows implies lower degree). For all well-
formed types τ1,τ2,τ

′
1,τ
′
2 and all well-formed lists of con-

straints C, it holds that

|(τ1
e
= τ

′
1,τ2

e
= τ

′
2) :: C| ≺ |(τ1→ τ2

e
= τ

′
1→ τ

′
2) :: C|

Proof. Immediate from Lemma 1.

Finally, the recursive calls in lines 2 and 6 also decrease
the degree of the input list of constraints, according to the
following:

Lemma 10 (Less constraints implies lower degree). For all
well-formed types τ , τ ′ and all well-formed list of constraints
C, it holds that

|C| ≺ |τ e
= τ

′ :: C|

Proof. Immediate from Lemma 2.

4.2 Soundness and Completeness Proof
Given an arbitrary list of constraints, the unification algorithm
either fails or returns its most general unifier. We have the
following properties:

• Soundness: the substitution produced is a unifier of the
constraints.

• Completeness: the returned substitution is the least
unifier, according to the substitution ordering defined
in Section 3.3.

A substitution S is called a unifier of a list of constraints C
according to whether unifier(C,S) is provable and it is defined
by induction on C as follows:

unifier([],S) = True

unifier((τ e
= τ ′) :: C′,S) = S(τ) = S(τ ′)∧unifier(C′,S)

A substitution S is a most general unifier of a list of con-
straints C if, for any other unifier S′ of C, there exists S1 such
that S′ = S1 ◦S; formally:

least(S,C)=∀S′.unifier(C,S′)→∃S1.∀α.(S1◦S)(α)= S′(α)

The type of the unification function is a dependent type that
ensures the following property of the returned substitution S:

(
unifier(C,S)∧ least(S,C)

)
∨UnifyFailure(C)

where UnifyFailure(C) is a type that encodes the reason why
unification of C fails. There are two possible causes of failure:
1) an occurs check error, 2) an error caused by trying to unify
distinct type constructors.

In the formalization source code, the definition of the unify
function contains “holes”7 to mark positions where proof
terms are expected. Instead of writing such proof terms, we
left them unspecified and use tactics to fill them with appro-
priate proofs. In the companion source code, the unification
function is full of such holes and they mark the position of
proof obligations for soundness, completeness and termina-
tion for each equation of the definition of unify.

In order to prove soundness obligations we define several
small lemmas that are direct consequences of the definition of
the application of substitutions, which are omitted for brevity.
Other lemmas necessary to ensure soundness are presented
below. They specify properties of unification and application
of substitutions.

Lemma 11. For all type variables α , types τ,τ ′ and substitu-
tions S, if S(α) = S(τ ′) then S(τ) = S([α 7→ τ ′]τ).

Proof. Induction over the structure of τ .

Lemma 12. For all type variables α , types τ , variable con-
texts V and constraint sets C, if S(α)= S(τ) and unifier(C,S)
then unifier([α 7→ τ]C,S).
Proof. Induction over C using Lemma 11.

Completeness proof obligations are filled by scripted au-
tomatic proof tactics using Lemma 3.

7A hole in a function definition is a subterm that is left unspecified. In
Coq, holes are represented by underscores and such unspecified parts of a
definition are usually filled by tactic generated terms.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.19/24 • 2020

5. Automating Proofs

Most parts of most proofs used to prove properties of program-
ming languages and of algorithms are exercises that consist
of a lot of somewhat tedious steps, with just a few cases rep-
resenting the core insights. It is not unusual for mechanized
proofs to take significant amounts of code on uninteresting
cases and quite significant effort on writing that code. In order
to deal with this problem in our development, we use L tac,
Coq’s domain specific language for writing custom tactics,
and Coq built-in automatic tactic auto, which implements
a Prolog-like resolution proof construction procedure using
hint databases within a depth limit.

The main L tac custom tactic used in our development is
a proof state simplifier that performs several manipulations on
the hypotheses and on the conclusion. It is defined by means
of two tactics, called mysimp and s. Tactic mysimp tries to
reduce the goal and repeatedly applies tactic s to the proof
state until all goals are solved or a failure occurs. Tactic s,
shown in Figure 5, performs pattern matching on a proof state
using L tac match goal construct. Patterns have the form:

[h1:t1, h2:t2 ... |- C] => tac

where each of ti and C are expressions, which represents
hypotheses and conclusion, respectively, and tac is the tactic
that is executed when a successful match occurs. Variables
with question marks can occur in L tac patterns, and can ap-
pear in tac without the question mark. Names hi are binding
occurrences that can be used in tac to refer to a specific
hypothesis. Another aspect worth mentioning is keyword
context. Pattern matching with context[e] is success-
ful if e occurs as a subexpression of some hypothesis or in the
conclusion. In Figure 5, we use context to automate case
analysis on equality tests on identifiers and natural numbers,
as shown below:

[|- context[eq_id_dec ?a ?b]] =>
destruct (eq_id_dec a b) ;
subst ; try congruence

Tactic destruct performs case analysis on a term, subst
searchs the context for a hypothesis of the form x = e or
e = x, where x is a variable and e is an expression, and
replaces all occurrences of x by e. Tactic congruence is a
decision procedure for equalities with uninterpreted functions
and data type constructors [6].

Ltac s :=
match goal with
(** some branches omitted for brevity *)
| [H : _ /\ _ |- _] => destruct H
| [H : _ \/ _ |- _] => destruct H
| [|- context[eq_nat_dec ?a ?b]] =>

destruct (eq_nat_dec a b) ;
subst ; try congruence

| [x : (id * ty)%type |- _] =>
let t := fresh "t"
in destruct x as [x t]

| [H : (_,_) = (_,_) |- _] => inverts* H
| [H : Some _ = Some _ |- _] => inverts* H
| [H : None = Some _ |- _] => congruence
| [|- _ /\ _] => split

end.

Ltac mysimp := repeat (simpl; s) ;
simpl; auto with arith.

Figure 5. Main proof state simplifier tactic.

Tactic inverts* H generates necessary conditions used
to prove H and afterwards executes tactic auto.8 Tactic
split divides a conjunction goal in its constituent parts.

Besides L tac scripts, the main tool used to automate
proofs in our development is tactic auto. This tactic uses
a relatively simple principle: a database of tactics is repeat-
edly applied to the initial goal, and then to all generated sub-
goals, until all goals are solved or a depth limit is reached.9

Databases to be used — called hint databases — can be spec-
ified by command Hint, which allows declaration of which
theorems are part of a certain hint database. The general form
of this command is:

Hint Resolve thm1 thm2 ... thmn : db.

where thmi are defined lemmas or theorems and db is the
database name to be used. When calling auto a hint database
can be specified, using keyword with. In Figure 5, auto is
used with database arith of basic Peano arithmetic proper-
ties. If no database name is specified, theorems are declared to
be part of hint database core. Proof obligations for termina-
tion are filled using lemmas 8, 9 e 10 that are included in hint
databases. Failures of unification, for a given list of constraints
C, is represented by UnifyFailure and proof obligations
related to failures are also handled by auto, thanks to the
inclusion of UnifyFailure constructors as auto hints
using command

Hint Constructors UnifyFailure.

6. Extracting a Type Inference Algorithm

6.1 Defining the Type Inference Algorithm
Our main goal in the formalization of a type unification algo-
rithm is to build a certified type inference tool. The inference
algorithm receives a term and returns its inferred type (using

8This tactic is defined on a tactic library developed by Arthur
Charguéraud [29].

9The default depth limit used by auto is 5.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.20/24 • 2020

constructor |Some— of Coq standard library |option— type)
or signals a failure, if no such type exists. The definition of
the algorithm is presented below.

infer e = t, where:
α is fresh.
C = 〈〈 /0 ` e : α〉〉
R = unify(C)
t = if R = Some S then S(α)

else fail

Basically, the algorithm calls the constraint generator for input
term using a fresh type variable α as its type and passing the
produced constraint to unification algorithm. If unification
succeeds, we apply the resulting substitution to α or signal a
failure, otherwise.

Soundness and completeness of type inference is ensured
by the following theorems.

Theorem 3 (Type inference soundness). For all terms e and
types τ , if infer e = τ then /0 ` e : τ .

Proof. By structural induction on e using lemma 3.7 and
theorem 3.4.

Theorem 4 (Type inference completeness). For all terms e
and types τ , if /0 ` e : τ then exists a substitution S′ such that
S′(τ ′) = τ , where τ ′ = in f er(e).

Proof. By structural induction on e using the completeness
property of unification.

6.2 Extracting a Certified Type Inference Algorithm
Now that we have defined a verified type inference algo-
rithm for STLC, how can we use it? Our strategy is to re-
place code of a Haskell type checker for STLC tested using
QuickCheck [30], by extracted Haskell code from our formal-
ization. This idea of replacing code tested with QuickCheck
by Coq extracted code isn’t new and was already used to for-
malize core functionality of a window manager implemented
in Haskell [24].

In order to test extracted code, we have implemented a
type inference algorithm for STLC in Haskell and built a test-
suite for it. We have implemented a generator for well-typed
λ -terms and use QuickCheck to test the following property
on both algorithms:

∀e.∀τ. /0 ` e : τ → infer(e) = τ

i.e. given a well-typed closed term e, the type inference
algorithm returns it’s correct type.

Since we have formalized type inference for STLC in
Coq, such extracted code should be obviously correct. In
principle, code Coq extraction preserves semantics if no ex-
traction customization command is used [23]. Commands
for customizing extraction behavior could introduce bugs and
invalidate any extraction guarantees. Also, Coq extraction
mechanism doesn’t make use of any standard Haskell library

type. Motivated by this, we’ve made some customizations
trying to produce code that use as much of Haskell’s library as
possible. In order to validate the correctness of our customiza-
tions, we have submitted extracted code to our QuickCheck
based testsuite and it passed in all tests for random generated
terms.

For the complete type inference algorithm, our Haskell
implementation is written in 142 lines of code, while Coq
extracted code is written in around 300 lines. Such difference
is justified as follows:

1. Coq extraction doesn’t make use of any predefined
Haskell type or type class. A possible fix is pointed
by Swierstra [24], make use of axioms and sections to
postulate the existence of an equality test and define
some wrapper Haskell functions that calls extracted
code with a proper |Eq—10 dictionary. Such situa-
tion is even worse in our context, since our Haskell
implementation makes use of monads and Haskell’s
|do—-notation for monadic programming. Since ex-
traction isn’t aware of Haskell’s |Monad— type class
and its associated syntactic sugar, code produced ex-
pose, in several places, a pattern-maching structure that
could be hidden by the monadic “bind” function.

2. Most of the code used in the formalization to produce
the termination argument for unification wasn’t erased
by program extraction. Coq code for unification takes
an additional argument to ensure that all recursive calls
are made on constraints with a smaller degree. We
have defined several functions to manipulate variable
contexts to represent that whenever we solve a type vari-
able in unification, it should be removed from variable
context, V . Since, such arguments use functions that
manipulate such non-propositional values (i.e. values
whose type isn’t in sort |Prop—), they aren’t removed
by extraction and it resulted in functions with unneces-
sary parameters in Haskell code for unification.

7. Related Work
Formalizations of unification algorithms: Formalization
of unification algorithms has been the subject of several re-
search works [8, 9, 10, 11].

In Paulson’s work [8] the representation of terms, built by
using a binary operator, uses equivalence classes of finite lists
where order and multiplicity of elements is considered irrele-
vant, deviating from simple textbook unification algorithms
([13, 12]).

Bove’s formalization of unification [9] starts from a Haskell
implementation and describes how to convert it into a term
that can be executed in type theory by acquiring an extra
termination argument (a proof of termination for the actual
input) and a proof obligation (that all possible inputs satisfy

10Type class |Eq— denotes the set of all Haskell types that supports
equality tests [1].

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.21/24 • 2020

this termination argument). This extra termination argument
is an inductive type whose constructors and indices represent
the call graph of the defined unification function. Bove’s
technique can be seen as a specific implementation of the
technique for general recursion based on well founded rela-
tions [31], which is the one implemented on Coq’s standard
library, used in our implementation. Also, Bove presents
soundness and completeness proofs for its implementation
together with the function definition (as occurs with our imple-
mentation) as well as by providing theorems separated from
the actual definitions. She argues that the first formalization
avoids code duplication since soundness and completeness
proofs follow the same recursive structure of the unification
function. Bove’s implementation is given in Alf, a depen-
dently typed programming language developed at Chalmers
that is currently unsupported.

McBride [10] develops a unification function that is struc-
turally recursive on the number of non-unified variables on
terms being unified. The idea of its termination argument
is that at each step the unification algorithm gets rid of one
unresolved variable from terms, a property that is carefully
represented with dependent types. Soundness and complete-
ness proofs are given as separate theorems in a technical
report [32]. McBride’s implementation is done on OLEG, a
dependently typed programming language that is nowadays
also unsupported.

Kothari [11] describes an implementation of a unifica-
tion function in Coq and proves some properties of most
general unifiers. Such properties are used to postulate that
unification function does produce most general unifiers on
some formalizations of type inference algorithms in type the-
ory [33]. Kothari’s implementation does not use any kind of
scripted proof automation and it uses the experimental com-
mand Function in order to generate an induction principle
from its unification function structure. He uses this induc-
tion principle to prove properties of the defined unification
function.

Avelar et al.’s proof of completeness [34] is not focused
on the proof that the unifier S of types τ , returned by the
unification algorithm, is the least of all existing unifiers of
τ . It involves instead properties that specify: i) dom(S) ⊆
FV(τ), ii) the contra-domain of S is a subset of FV(τ)−
dom(S), and iii) if the unification algorithm fails then there
is no unifier. The proofs involve a quite large piece of code,
and the program does not follow simple textbook unification
algorithms. The proofs are based instead on concepts like
the first position of conflict between terms (types) and on
resolution of conflicts. More recent work of Avelar et al. [35]
extends the previous formalization by the description of a
more elaborate and efficient first-order unification algorithm.
The described algorithm navigates the tree structure of the two
terms being unified in such a way that, if the two terms are
not unifiable then, after the difference at the first position of
conflict between the terms is eliminated through a substitution,
the search of a possible next position of conflict is computed

through application of auxiliary functions starting from the
previous position.

Formalization of type inference algorithms: Most works
on formalizing type inference algorithms focus on (or some
variant of) Damas-Milner type system (c.f. [36, 37, 38, 39, 40,
41]).

The first works on formalizing type inference are by Nazareth
and Narascewski in Isabelle/HOL [37, 38]. Both works focus
on formalizing the well-known algorithm W [3], but unlike
our work, they don’t provide a verified implementation of uni-
fication. They assume all the necessary unification properties
to finish their certification of type inference. The work of
Dubois [36] also postulates unification and prove properties
of type inference for ML using the Coq proof assistant system.
Nominal techniques were used by Urban [39] to certify algo-
rithm W in Isabelle/HOL using the Nominal package. As in
other works, Urban just assumes properties that the unification
algorithm should have without formalizing it.

Full formalizations of type inference for ML with struc-
tural polymorphism was reported by Jacques Garrigue [40,
41]. He fully formalizes interpreters for fragments of the
OCaml programming language. Since the type system of
OCaml is far more elaborate than STLC, his work involves
a more substantial formalization effort than the one reported
in this work. Garrigue’s formalization of unification avoids
the construction of a well-founded relation for constraints by
defining the algorithm by using a “bound” on the number
of allowed recursive calls made. Also, he uses libraries for
dealing with bindings using the so-called locally nameless
approach [42].

Applications of proof assistants. Ribeiro and Du Bois [43]
described the formalization of a RE (regular expression) pars-
ing algorithm that produces a bit representation of its parse
tree in the dependently typed language Agda. The algorithm
computes bit-codes using Brzozowski derivatives and they
proved that the produced codes are equivalent to parse trees
ensuring soundness and completeness with respect to an in-
ductive RE semantics. They included the certified algorithm
in a tool developed by themselves, named verigrep, for RE-
based search in the style of GNU grep. While the authors
provided formal proofs, their tool show a bad performance
when compared to other approaches to RE parsing.

A formal constructive theory of RLs (regular language)
was presented by Doczkal et. al. in [44]. They formalized
some fundamental results about RLs. For their formalization,
they used the Ssreflect extension to Coq, which features an
extensive library with support for reasoning about finite struc-
tures such as finite types and finite graphs. They established
all of their results in about 1400 lines of Coq, half of which are
specifications. Most of their formalization deals with trans-
lations between different representations of RLs, including
REs, DFAs (deterministic finite automata), minimal DFAs and
NFAs (non-deterministic finite automata). They formalized
all these (and other) representations and constructed com-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.22/24 • 2020

putable conversions between them. Besides other interesting
aspects of their work, they proved the decidability of language
equivalence for all representations. Unlike our work, Doczkal
et. al.’s only concerns about formalizing classical results of
RL theory in Coq, without using the formalized automata in
practical applications, like matching or parsing.

8. Conclusion
We have given a complete formalization of termination, sound-
ness and completeness of a type unification algorithm in the
Coq proof assistant. To the best of our knowledge, the pro-
posed formalization is the first to follow the structure of ter-
mination proofs presented in classical textbooks on type sys-
tems [13, 12]. Soundness and completeness proofs of unifica-
tion are coupled with the algorithm definition and are filled
by scripted proof tactics using previously proved lemmas.

The formalized unification algorithm is used to produce a
correct constraint-based type inference algorithm for STLC
in Coq. We use such formalization to produce a Haskell im-
plementation from it. Since Coq extraction doesn’t make use
of any Haskell’s library types, we use some customization
commands to produce more idiomatic Haskell code. To vali-
date such customizations, we have used property based tests
to ensure that the produced Haskell code behaves as expected.

The developed formalization has 962 lines of code and
around 100 lines of comments. The formalization is composed
by 47 lemas and theorems, 49 type and function definitions
and 5 inductive types. Most of the implementation effort has
been done on proving termination, which takes 293 lines of
our code, expressed in 21 theorems. Compared with Kothari’s
implementation, that is written in more than 1000 lines, our
code is more compact.

We intend to use this formalization to develop a complete
type inference algorithm for Haskell in the Coq proof assistant.
The developed work is available online [20].

Author contributions
All authors have contributed equally to the development of
this work.
References

[1] JONES, S. P. Haskell 98 Language and Libraries: the
Revised Report. [S.l.: s.n.], 2003.

[2] MILNER, R.; TOFTE, M.; HARPER, R. The Definition
of Standard ML. [S.l.]: MIT Press, 1990. I-XI, 1-101 p.

[3] MILNER, R. A Theory of Type Polymorphism in Pro-
gramming. J. Comput. Syst. Sci., v. 17, n. 3, p. 348–375, 1978.

[4] POTTIER, F.; RÉMY, D. The Essence of ML Type In-
ference. In: PIERCE, B. C. (Ed.). Advanced Topics in Types
and Programming Languages. MIT Press, 2005. cap. 10, p.
389–489. Disponı́vel em: 〈http://cristal.inria.fr/attapl/〉.
[5] ROBINSON, J. A. A Machine-Oriented Logic Based on
the Resolution Principle. J. ACM, v. 12, n. 1, p. 23–41, 1965.

[6] BERTOT, Y.; CASTÉRAN, P. Interactive Theorem Prov-
ing and Program Development. Coq’Art: The Calculus of
Inductive Constructions. [S.l.]: Springer Verlag, 2004. (Texts
in Theoretical Computer Science).

[7] BOVE, A.; DYBJER, P.; NORELL, U. A Brief Overview
of Agda — A Functional Language with Dependent Types.
In: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics. Berlin, Heidelberg:
Springer-Verlag, 2009. (TPHOLs ’09), p. 73–78.

[8] PAULSON, L. C. Verifying the Unification Algorithm in
LCF. CoRR, cs.LO/9301101, 1993.

[9] BOVE, A. Programming in Martin-Löf Type Theory:
Unification - A non-trivial Example. 1999. Licentiate Thesis
of the Department of Computer Science, Chalmers University
of Technology.

[10] MCBRIDE, C. First-order unification by structural recur-
sion. J. Funct. Program., v. 13, n. 6, p. 1061–1075, 2003.

[11] KOTHARI, S.; CALDWELL, J. A Machine Checked
Model of Idempotent MGU Axioms For Lists of Equational
Constraints. In: FERNANDEZ, M. (Ed.). Proceedings 24th
International Workshop on Unification. [S.l.: s.n.], 2010.
(EPTCS, v. 42), p. 24–38.

[12] MITCHELL, J. C. Foundations of Programming Lan-
guages. Cambridge, MA, USA: MIT Press, 1996.

[13] PIERCE, B. C. Types and programming languages. Cam-
bridge, MA, USA: MIT Press, 2002.

[14] MCBRIDE, C.; MCKINNA, J. The view from the left. J.
Funct. Program., v. 14, n. 1, p. 69–111, 2004.

[15] LEROY, X. Formal verification of a realistic compiler.
Commun. ACM, v. 52, n. 7, p. 107–115, 2009.

[16] BARTHE, G. et al. A Formal Correspondence between
Offensive and Defensive JavaCard Virtual Machines. In:
CORTESI, A. (Ed.). VMCAI. [S.l.]: Springer, 2002. (Lec-
ture Notes in Computer Science, v. 2294), p. 32–45.

[17] GONTHIER, G. The Four Colour Theorem: Engineer-
ing of a Formal Proof. In: KAPUR, D. (Ed.). ASCM. [S.l.]:
Springer, 2007. (Lecture Notes in Computer Science, v. 5081),
p. 333.

[18] GONTHIER, G. Engineering mathematics: the odd order
theorem proof. In: GIACOBAZZI, R.; COUSOT, R. (Ed.).
POPL. [S.l.]: ACM, 2013. p. 1–2.

[19] RIBEIRO, R.; CAMARÃO, C. A mechanized text-
book proof of a type unification algorithm. In: SBMF. [S.l.]:
Springer, 2015. p. 127–141.

[20] RIBEIRO, R. et al. A Mechanized Textbook Proof of
a Type Unification Algorithm — On-line repository. 2015.
Https://github.com/rodrigogribeiro/unification.

[21] SØRENSEN, M.; URZYCZYN, P. Lectures on the
Curry-Howard Isomorphism. [S.l.]: Elsevier, 2006. (Studies
in Logic and the Foundations of Mathematics, v. 10).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.23/24 • 2020

http://cristal.inria.fr/attapl/

[22] CHLIPALA, A. Certified Programming with Dependent
Types - A Pragmatic Introduction to the Coq Proof Assistant.
MIT Press, 2013. Disponı́vel em: 〈http://mitpress.mit.edu/
books/certified-programming-dependent-types〉.
[23] LETOUZEY, P. A New Extraction for Coq. In: Proceed-
ings of the 2002 International Conference on Types for Proofs
and Programs. Berlin, Heidelberg: Springer-Verlag, 2003.
(TYPES’02), p. 200–219. Disponı́vel em: 〈http://dl.acm.org/
citation.cfm?id=1762639.1762651〉.
[24] SWIERSTRA, W. Xmonad in Coq (Experience Report):
Programming a Window Manager in a Proof Assistant. SIG-
PLAN Not., ACM, New York, NY, USA, v. 47, n. 12, p. 131–
136, set. 2012. Disponı́vel em: 〈http://doi.acm.org/10.1145/
2430532.2364523〉.
[25] AYDEMIR, B. E. et al. Engineering formal metatheory.
In: NECULA, G. C.; WADLER, P. (Ed.). POPL. [S.l.]: ACM,
2008. p. 3–15.

[26] CHLIPALA, A. Parametric higher-order abstract syntax
for mechanized semantics. SIGPLAN Not., ACM, New York,
NY, USA, v. 43, n. 9, p. 143–156, set. 2008. Disponı́vel em:
〈http://doi.acm.org/10.1145/1411203.1411226〉.
[27] HINDLEY, J. R.; SELDIN, J. P. Lambda-Calculus and
Combinators: An Introduction. 2. ed. New York, NY, USA:
Cambridge University Press, 2008.

[28] Coq Developement Team. Coq Proof Assistant — Refer-
ence Manual. 2014. Disponı́vel em: 〈http://coq.inria.fr/distrib/
current/refman/〉.
[29] PIERCE, B. C. et al. Software Foundations. [S.l.]: Elec-
tronic textbook, 2015.

[30] CLAESSEN, K.; HUGHES, J. Quickcheck: a
lightweight tool for random testing of haskell programs.
In: ICFP ’00: Proceedings of the fifth ACM SIGPLAN in-
ternational conference on Functional programming. New
York, NY, USA: ACM, 2000. p. 268–279. Disponı́vel em:
〈http://dx.doi.org/10.1145/351240.351266〉.
[31] NORDSTRÖM, B. Terminating General Recursion. BIT
Numerical Mathematics, v. 28, n. 3, p. 605–619, 1988.

[32] MCBRIDE, C. First-order unification by structural
recursion — Correctness proof. Disponı́vel em: 〈http://
strictlypositive.org/foubsr-website/proof.ps〉.
[33] NARASCHEWSKI, W.; NIPKOW, T. Type Inference
Verified: Algorithm W in Isabelle/HOL. J. Autom. Reason.,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, v. 23,
n. 3, p. 299–318, nov. 1999. Disponı́vel em: 〈http://dx.doi.
org/10.1023/A:1006277616879〉.
[34] AVELAR, A. B. et al. Verification of the Complete-
ness of Unification Algorithms à la Robinson. In: DAWAR,
A.; QUEIROZ, R. J. G. B. de (Ed.). Logic, Language, In-
formation and Computation, 17th International Workshop,
WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceed-
ings. Springer, 2010. (Lecture Notes in Computer Science,

v. 6188), p. 110–124. Disponı́vel em: 〈http://dx.doi.org/10.
1007/978-3-642-13824-9 10〉.
[35] AVELAR, A. B. et al. First-order unification in the PVS
proof assistant. Logic Journal of the IGPL, v. 22, n. 5, p. 758–
789, 2014. Disponı́vel em: 〈http://dx.doi.org/10.1093/jigpal/
jzu012〉.
[36] DUBOIS, C.; MÉNISSIER-MORAIN, V. Certification
of a Type Inference Tool for ML: Damas-Milner within Coq. J.
Autom. Reasoning, v. 23, n. 3-4, p. 319–346, 1999. Disponı́vel
em: 〈http://dx.doi.org/10.1023/A:1006285817788〉.
[37] NARASCHEWSKI, W.; NIPKOW, T. Type inference
verified: Algorithm W in Isabelle/HOL. Journal of Automated
Reasoning, v. 23, p. 299–318, 1999.

[38] NAZARETH, D.; NIPKOW, T. Formal Verification of
Algorithm W: The Monomorphic Case. In: WRIGHT, J.
von; GRUNDY, J.; HARRISON, J. (Ed.). Theorem Prov-
ing in Higher Order Logics (TPHOLs’96). Springer, 1996.
(LNCS, v. 1125), p. 331–346. Disponı́vel em: 〈http://www4.
informatik.tu-muenchen.de/∼nipkow/pubs/tphol96.dvi.gz〉.
[39] URBAN, C.; NIPKOW, T. Nominal verification of al-
gorithm W. In: HUET, G.; LéVY, J.-J.; PLOTKIN, G. (Ed.).
From Semantics to Computer Science. Essays in Honour of
Gilles Kahn. [S.l.]: Cambridge University Press, 2009. p. 363–
382.

[40] GARRIGUE, J. A certified implementation of ML with
structural polymorphism. In: UEDA, K. (Ed.). Programming
Languages and Systems - 8th Asian Symposium, APLAS 2010,
Shanghai, China, November 28 - December 1, 2010. Proceed-
ings. Springer, 2010. (Lecture Notes in Computer Science,
v. 6461), p. 360–375. Disponı́vel em: 〈http://dx.doi.org/10.
1007/978-3-642-17164-2 25〉.
[41] GARRIGUE, J. A certified implementation of ML
with structural polymorphism and recursive types. Math-
ematical Structures in Computer Science, v. 25, n. 4, p.
867–891, 2015. Disponı́vel em: 〈http://dx.doi.org/10.1017/
S0960129513000066〉.
[42] CHARGUéRAUD, A. The Locally Nameless Represen-
tation. J. Autom. Reasoning, v. 49, n. 3, p. 363–408, 2012.
Disponı́vel em: 〈http://dblp.uni-trier.de/db/journals/jar/jar49.
html#Chargueraud12〉.
[43] RIBEIRO, R.; BOIS, A. D. Certified Bit-Coded Regular
Expression Parsing. Proceedings of the 21st Brazilian Sym-
posium on Programming Languages - SBLP 2017, p. 1–8,
2017. Disponı́vel em: 〈http://dl.acm.org/citation.cfm?doid=
3125374.3125381〉.
[44] DOCZKAL, C.; KAISER, J. O.; SMOLKA, G. A con-
structive theory of regular languages in Coq. Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), v.
8307 LNCS, p. 82–97, 2013.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.24/24 • 2020

http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://dl.acm.org/citation.cfm?id=1762639.1762651
http://dl.acm.org/citation.cfm?id=1762639.1762651
http://doi.acm.org/10.1145/2430532.2364523
http://doi.acm.org/10.1145/2430532.2364523
http://doi.acm.org/10.1145/1411203.1411226
http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/
http://dx.doi.org/10.1145/351240.351266
http://strictlypositive.org/foubsr-website/proof.ps
http://strictlypositive.org/foubsr-website/proof.ps
http://dx.doi.org/10.1023/A:1006277616879
http://dx.doi.org/10.1023/A:1006277616879
http://dx.doi.org/10.1007/978-3-642-13824-9_10
http://dx.doi.org/10.1007/978-3-642-13824-9_10
http://dx.doi.org/10.1093/jigpal/jzu012
http://dx.doi.org/10.1093/jigpal/jzu012
http://dx.doi.org/10.1023/A:1006285817788
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/tphol96.dvi.gz
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/tphol96.dvi.gz
http://dx.doi.org/10.1007/978-3-642-17164-2_25
http://dx.doi.org/10.1007/978-3-642-17164-2_25
http://dx.doi.org/10.1017/S0960129513000066
http://dx.doi.org/10.1017/S0960129513000066
http://dblp.uni-trier.de/db/journals/jar/jar49.html#Chargueraud12
http://dblp.uni-trier.de/db/journals/jar/jar49.html#Chargueraud12
http://dl.acm.org/citation.cfm?doid=3125374.3125381
http://dl.acm.org/citation.cfm?doid=3125374.3125381

	Introduction
	A Taste of Coq Proof Assistant
	Definitions
	Terms
	Types
	Substitutions
	Type System
	Well-Formedness Conditions
	Occurs Check
	Constraint Generation

	The Unification Algorithm
	Termination Proof
	Soundness and Completeness Proof

	Automating Proofs
	Extracting a Type Inference Algorithm
	Defining the Type Inference Algorithm
	Extracting a Certified Type Inference Algorithm

	Related Work
	Conclusion
	References

