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Abstract: Lithology identification, obtained through the analysis of several geophysical properties, has an
important role in the process of characterization of oil reservoirs. The identification can be accomplished by
direct and indirect methods, but these methods are not always feasible because of the cost or imprecision of
the results generated. Consequently, there is a need to automate the procedure of reservoir characterization
and, in this context, computational intelligence techniques appear as an alternative to lithology identification.
However, to acquire proper performance, usually some parameters should be adjusted and this can become
a hard task depending on the complexity of the underlying problem. This paper aims to apply an Extreme
Learning Machine (ELM) adjusted with a Differential Evolution (DE) to classify data from the South Provence
Basin, using a previously published paper as a baseline reference. The paper contributions include the use of
an evolutionary algorithm as a tool for search on the hyperparameters of the ELM. In addition, an activation
function recently proposed in the literature is implemented and tested. The computational approach developed
here has the potential to assist in petrographic data classification and helps to improve the process of reservoir
characterization and the production development planning
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Resumo: A identificação litológica, obtida através da análise de várias propriedades geofı́sicas, tem um
papel importante no processo de caracterização de reservatórios de petróleo. A identificação pode ser
realizada por métodos diretos e indiretos, mas esses métodos nem sempre são viáveis devido ao custo ou
imprecisão dos resultados gerados. Consequentemente, existe a necessidade de automatizar o procedimento
de caracterização do reservatório e, neste contexto, as técnicas de inteligência computacional aparecem como
uma alternativa à identificação litológica. No entanto, para obter um desempenho adequado, geralmente alguns
parâmetros devem ser ajustados e isso pode se tornar uma tarefa difı́cil, dependendo da complexidade do
problema subjacente. Este trabalho tem como objetivo aplicar uma Máquina de Aprendizagem Extrema (ELM)
ajustada com uma Evolução Diferencial (DE) para classificar os dados da Bacia do Sul da Provença, usando um
artigo publicado anteriormente como referência. As contribuições do artigo incluem o uso de um algoritmo
evolucionário como ferramenta de busca nos hiper parâmetros do ELM. Além disso, uma função de ativação
recentemente proposta na literatura é implementada e testada. A abordagem computacional desenvolvida
aqui tem o potencial de auxiliar na classificação de dados petrográficos e ajuda a melhorar o processo de
caracterização de reservatórios e o planejamento do desenvolvimento da produção
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1. Introduction
The knowledge of the lithology of an oil well can be obtained
through of the analysis of various geophysical features. This
procedure is critical in the reservoir description process and
enables to generate lithological patterns that are described
by the petrophysical features and may then be applied in
flow simulators for the purpose of evaluate the behavior of a
reservoir. Changes in lithology usually is the main reason for
differences in rock properties.

There are two kinds of conventional methods for the iden-
tification of lithology: direct and indirect. Lithology deter-
mination by direct observation of underground cores is an
expensive process and is not always reliable and valid because
different geologists may provide different interpretations. In-
direct methods use well logs for quantifying the physical
characteristics of geological formations providing most of the
data available to a geologist. A well log is a record of the
formations and any events that are encountered in the drilling
process (Figure 2 shows an example of well logs of the oil
well studied here). As well as their importance in conclusion
decisions, they are also crucial instruments for mapping and
identifying lithologies. Nevertheless, indirect methods do
not obtain similar performance as direct methods. Manual
interpretation of lithologies from well logs is a labor-intensive
process that involves the expense of a considerable amount of
time by an experienced well log analyst, even using the aid
of graphical techniques like cross-plotting [1]. The problem
becomes especially more difficult as the number of simultane-
ous logs to be analyzed increases. Therefore, it is required to
automate the procedure of reservoir characterization and, at
this point, computer technologies has shown suitable to lithol-
ogy identification [2, 3, 4, 5]. These computer technologies
assist the geologists to avoid the unnecessary data analysis
work and improve the lithology identification accuracy [6].
As a result, geologists can build better quantitative evaluation
models of different rock properties, which can also improve
overall evaluation.

Machine learning approaches can potentially make the
process of reservoir and rock formation identification more
efficiently by providing the means to formalize the expert
knowledge through know-how engineering [7]. Some research
efforts found in the literature are described as follows. An
unsupervised Self Organizing Map (SOM) of neural networks
for the determination of oil well lithology and fluid contents
was proposed by [8] and employed fuzzy inference rules de-
rived from known characteristics of well logs were used in
the interpretation of the clusters generated by the SOM neural
networks. In [9], it was introduced kernel Fisher discriminant
analysis (KFD), an improved Linear Discriminant Analysis
(LDA) with kernel trick, to overcome the shortcoming of LDA
for lithology identification. This procedure includes two pro-
cesses: raising dimensions to get nonlinear information and
reducing dimensions to get classification features. Cross plots
and Principal Component Analysis were used to lithology
characterization and mineralogy description from geochem-

ical logging tool data [10]. In [6], five machine learning
methods were employed to classify the formation lithology
identification using well log data samples. Horrocks et al [2]
explores different machine learning algorithms and architec-
tures for classifying lithologies using wireline data for coal
exploration. Other approaches include multivariate statistical
analysis [11], neural networks with probabilistic neurons [12]
or radial basis function kernel [13], random forests [14, 15],
combination of classification and regression methods [16] and
collaborative learning agents [7].

ELM networks may need a higher number of hidden neu-
rons due to the random determination of the input weights
and hidden biases. In [17] a hybrid learning algorithm which
uses the differential evolutionary algorithm was proposed to
select the input weights and Moore-Penrose (MP) generalized
inverse to analytically determine the output weights. This
approach proved to be able to achieve a good generalization
performance with much more compact networks. An adap-
tive evolutionary ELM learning paradigm was developed by
[18], for tool wear estimation in high-speed milling process.
A Differential Evolution algorithm (DE) was used to select
parameters optimized for the ELM. DE-ELM was used in
[19] to classify hyperspectral images. Four sets of hyperspec-
tral reference data were used and confirmed the attractive
properties of the DE-ELM method in terms of classification
accuracy and computation time. The results indicated that the
proposed adaptive evolutionary ELM-based estimation model
can effectively estimate the tool wear in high-speed milling
process. In [20] a genetic neural network model was applied
to predict lithology characteristic. The model exhibited good
representation and strong prediction ability, and is suitable for
recognition of lithology, lithofacies and sedimentary facies.
The lithology identification from well log based on DE-SVM
was proposed by [21]. The proposed method was considered
feasible and produced satisfactory results.

In the literature, ELM integrated with DE have been used
in several applications. There are some studies that used
evolutionary algorithms combined with machine learning to
identify lithologies. However, there are a lack of studies that
used the Swish activation function in ELM implementations.
Swish activation function has recently proposed by [22]. This
paper explores an Extreme Learning Machine (ELM) [23]
associated with a Differential Evolution (DE) [24] to classify
data from the South Provence Basin, taken from [25], using
the paper by [26] as a baseline reference. The output of the
classifier is created from input data composed by the com-
bination of mineralogy and textural information and divided
into seven classes. The contribution of this paper includes
the use of an evolutionary algorithm as a tool for search on
the hyperparameters of the ELM. In addition, a recently pro-
posed activation function called Swish [22] is implemented
and its performance is compared with other well established
activation functions in the literature. We have performed com-
putational experiments and we have consistently achieved
better results than those achieved by [26]. The remainder
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of this paper is organized as below. Section 2 describes the
experimental data used in this study, the research methodol-
ogy and evaluation methods. Section 3 presents modeling
processes, discusses prediction results, and compares model
performance. Concluding remarks and research contributions
are given in the final section.

2. Material and Methods
2.1 Experimental Dataset
The well of interest in this paper is located within the South-
ern Basin of Provence, near Cassis and La Ciotat, called La
Ciotat-1 (Figure 1). The database employed here, shown in
Table 10, is a subset of samples of the database found in [25].
This subset was selected for purposes of comparison with [26].
The dataset was generated through core plugs extracted from
land well La Ciotat-1 drilled down to 150 m from the surface.
Figure 2 shows an example the well logs. The set of well logs
include gamma-ray, P- and S-wave sonic, density, and resistiv-
ity data. This database is composed by elastic, mineralogical,
and petrographic properties and was used in several studies
([26, 27, 28, 29]). Integrates ultrasonic measurements of P-
and S-wave velocities at various effective pressures, density
and porosity measurements, quantitative mineralogic analyses
using X-ray diffraction (XRD), detailed petrographic studies
of thin sections, and critical porosity and elastic properties
of microporous mixed carbonate-siliciclastic rocks. Table 1
shows the petrographic classes and their description according
to [25].

Figure 1. Location of La Ciotat-1 and La Ciotat-2 wells
(extracted from [25]).

2.2 Extreme Learning Machines
The Extreme Learning Machine (ELM) [23] is a feed for-
ward artificial neural networks, which has a single hidden

Table 1. Petrographic classes and their description according
to [25].

Class Description
C1 Limestone with grainstone texture (quartz < 5%)

C2 Limestone with wackestone-packstone texture
(quartz < 5%)

C3 Quartz-rich limestone with sparitic/microsparitic
intergranular space: grainstone texture or
wackestone-packstone texture with recrystallized
matrix (quartz 5%−50%)

C4 Quartz-rich limestone with micritic intergranu-
lar space: wackestone-packstone texture (quartz
5%−50%)

C5 Slightly argillaceous quartz-rich limestone with
wackestone-packstone texture (quartz 5%−50%
and clay 2%−5%)

C6 Clean cemented sandstone (quartz > 50%)

C7 Sandstone with carbonate micritic matrix (quartz
> 50%)

layer. ELM strikes a balance between speed and general-
ization performance, and attracts more and more attention
from various respects. Compared with the Artificial Neural
Network (ANN), the Support Vector Machine (SVM) and
other traditional prediction models, the ELM model retains
the advantages of fast learning, good ability to generalize and
convenience in terms of modeling [30]. In ELMs there are
three levels of randomness [31]: (1) fully connected, hidden
node parameters are randomly generated, (2) the connection
can be randomly generated, not all input nodes are connected
to a particular hidden node, and (3) a hidden node itself can
be a subnetwork formed by several nodes resulting in learning
local features. The output function of ELM used in this paper
is given by

ŷ(x) =
L

∑
i=1

βiG(α,wi,bi,c,x) =

L

∑
i=1

βiG(αMLP(wi,bi,x)+(1−α)RBF(x,c))

where ŷ is the ELM prediction associated to the input
vector x, wi is the weight vector of the i-th hidden node, bi
are the biases of the neurons in the hidden layer, βi are output
weights, c is the vector of centers. MLP and RBF are the
input activation functions, respectively, while α is a user-
defined that multiplies MLP(·) and RBF(·) terms. G(·) is the
nonlinear output activation function and L is the the number of
neurons in the hidden layer. The output activation functions
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Figure 2. Well logs example (provide from Petroleum National Agency (ANP)).

G(α,wi,bi,c,x) with the hidden nodes weights (w,b) are
presented in Table 2.

The parameters (w,b) are randomly generated (normally
distributed with zero mean and standard deviation equals to
one), and weights βi of the output layer are determined analyti-
cally. MLP and RBF are the multilayer perceptron and Radial
Basis Function activation functions, respectively, written as

MLP(wi,bi,x) =
D

∑
k=1

wikxk +bi and (1)

RBF(x,c) =
D

∑
j=1

x j− ci j

ri
(2)

where D is the number of input features, the centers ci j are
taken uniformly from the bounding hyperrectangle of the input
variables and r = max(||x− c||)/

√
2D.

The output weight vector [β1, ...,βL] can be determined by
minimizing the approximation error [32]

min
βββ∈RL

‖Hβββ −y‖

where y is the output data vector, H is the hidden layer output

Table 2. Output activation functions used in ELM.
# Name Activation Function G
0 Tribas G(x) = 1−|x| if −1≥ x≥ 1 otherwise 0
1 Identity G(x) = x
2 ReLU G(x) = max(0,xi; i = 1, · · · ,D)

3 Swish G(x) =
x

1+ exp(−x)
4 Inverse Tribas G(x) = |x| if −1≥ x≥ 1 otherwise 0
5 HardLim G(x) = 1 if x≥ 0 otherwise 0
6 SoftLim G(x) = x if 0≥ x≥ 1 else 0 if x < 0 otherwise 1
7 Gaussian G(x) = exp(−x2)

8 Multiquadric G(x) =
√

x2 +b2

9 Inverse Multiquadric G(x) =
1

(x2 +b2)1/2

matrix

H =

G1 (α,w1,b1,c,x1) · · · GL (α,wL,bL,c,x1)
...

. . .
...

G1 (α,w1,b1,c,xN) · · · GL (α,wL,bL,c,xN)

and

y =

y1
...

yN


is the output data vector with N the number of data points.
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The optimal solution is given by

βββ = (HTH)−1HTy = H†y

where H† is the pseudoinverse of H. Figure 3 shows an
example of a 4-8-1 ELM with four inputs, one hidden layer
(8 neurons in each) and one output (petrographic class).

Figure 3. Connectivities for a 4-8-1 Extreme Learning
Machine: four inputs, one hidden layer (8 neurons in each)
and one output.

2.3 Evolutionary setting of ELM parameters using
Differential Evolution

In general, classification models have important parameters
which cannot be directly estimated from the data [33]. Such
parameters are called hyperparameters, whose values are set
before the learning process starts. The performance of a
model can be significantly affected by the choice of the hy-
perparameter, but choosing the best set of values can become
a complex task [34]. Often, these hyperparameters are de-
fined empirically by testing different settings by hand or with
an exhaustive search (Grid Search) [35]. Optimization tech-
niques, such as nature-inspired algorithms [36] and automatic
configuration procedures [37, 38] were also alternatives to
search towards good parameter sets. It is important to note
that Grid Search can be extremely computationally expensive
depending on the size of the hyperparameter space and may
take an impractical time to find the set of parameters that leads
to the best performance of the model. An alternative is the
use of population-based evolutionary optimization algorithms
to find a set of hyperparameters values that produce an opti-
mal or sub-optimal model which minimizes a predefined loss
function on given test data.

Setting the parameters of a classifier is usually a difficult
task. Often, these parameters are defined empirically, by
testing different settings by hand. An alternative is the use of
population-based evolutionary algorithms. Here we employ
an Differential Evolution (DE) [24] to find the best set of
ELM parameters, where each individual is a representation of
an Extreme Learning Machine.

Differential evolution is known as one of the most efficient
evolutionary algorithms (EAs). The basic strategy of DE can

be described as follows [17]. Given a set of parameter vectors
{θθθ i,J|i = 1,2, . . . ,NP} as a population at each generation J,
we do iteratively:

1. Mutation: For each target vector θθθ i,J+1, i= 1,2, . . . ,NP,
a mutant vector is generated according to

ννν i,J+1 = θθθ r1,J +F(θθθ r2,J−θθθ r3,J)

with random and mutually different indices r1,r2,r3 ∈
1,2, . . . ,NP and F ∈ [0,2]. The constant factor F is
used to control the amplification of the differential vari-
ation (θθθ r2,G−θθθ r3,G).

2. Crossover: In this step, the D-dimensional trial vec-
tor: µµµ i,J+1 = (µµµ1i,J+1,µµµ2i,J+1, . . . ,µµµDi,J+1) is formed
so that

µµµ ji,J+1 =

{
ν ji,J+1 if randb( j)≤CR or j = rnbr(i),
θ ji,J if randb( j)>CR and j 6= rnbr(i).

(3)

In Eq. (3), randb( j) is the jth evaluation of a uniform random
number generator with outcome in [0,1]. CR is the crossover
constant in [0,1] which is determined by user; rnbr(i) is a ran-
dom chosen integer index ∈ [1,D] which ensures that µµµ i,J+1
gets at least one parameter from ννν i,J+1.

3. Selection: If vector µµµ i,J+1 is better than θθθ i,J , then θθθ i,J+1 is
set to µµµ i,J+1. Otherwise, the old value θθθ i,J is retained as
θθθ i,J+1.

Each candidate solution θθθ = (θ1,θ2,θ3) encodes an ELM
classifier. An individual represents the number of neurons in
the hidden layers (θ1), the activation function (θ2) according
to Table 2, and the parameter α (θ3) as shown in Table 3.
Considering the DE approach, the goal is to find the decision
variables, corresponding to the ELM parameters and a subset
of features, so that the network generates computed outputs
that match the outputs of the training data.

2.4 Cross-validation
Cross-validation is a sampling statistical technique to evaluate
the ability of generalization of a model from a dataset. Among
the cross-validation techniques, k-fold [39] is one of the most
used. k-fold uses a part of the data available to fit the model,
and another different part to test it. The dataset is randomly
divided into k > 1 subsets; from the k subsets, k−1 are used
for training and the remaining set is used for testing. This
process is repeated k times, using a different test set in each
iteration. Different from the Hold-out validation, where the
data are divide only one time in train set and test set, the k-fold
validation reduces the variance in the performance estimate for
different data samples and, because of that, the performance
estimate is less sensitive to the partitioning of the data. Figure
4 shows an example of 5-fold cross validation scheme.
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Table 3. Encoding of DE for ELM hyperparameters setting.
The column DV indicates the Decision Variable in the
candidate solution.

DV Description Range
θ1 Number of neurons in

the hidden layer (see Fig.
3)

1–300

θ2 Coding representing the
activation function ac-
cording to Table 2

0: Tribas, 1: Identity,
2: ReLU, 3: Swish,
4: Inverse Tribas, 5:
HardLim, 6: SoftLim,
7: Gaussian, 8: Multi-
quadric, 9: Inverse Mul-
tiquadric

θ3 Coding representing the
α parameter

[0,1]

2.5 Performance Metrics
In order to evaluate the performance of the methods we used
the following metrics: Accuracy, Recall, F1, and Kappa. The
Accuracy, defined in Eq. (4), measures the percentage of
correct classification by comparing the predicted classes with
classified by the manual method, by direct counting.

Accuracy =
1
N

N

∑
i=1

I( f (xi) = yi) (4)

where, f (xi) is the predicted class of a test samples and yi is
the true class of this sample. Consider that I(true) = 1 and
I( f alse) = 0.

The Recall, given by

Recall(ck) =
T Pk

T Pk +FNk
(5)

measures the percentage of actual positive samples that were
classified as positive. In Eq. (5) where T Pk and FNk are the
number of true positives and the number of false negatives for
class ck, respectively.

The F1 score, also known as F-Measure, is written as

F1(ck) =
2T Pk

2T Pk +FPk +FNk
(6)

where T Pk is the number of positive samples that were cor-
rectly classified, FPk is the number of negative samples clas-
sified as positive and FNk is the number of positive samples
classified as negative. F1 score reaches its best value at 1 and
worst score at 0.

The Kappa Test is a measure of interobserver agreement
and measures the degree agreement beyond what would be
expected solely by chance. To describe whether there is an
agreement between two or more evaluators, or between two
classification methods, we used the Kappa measure which

Figure 4. k-fold cross-validation method diagram (k = 5).

is based on consistent number of responses, i.e., the number
of cases in which the result is even among evaluators. This
agreement measure assumes a maximum value of 1; values
close and even below 0 indicates no agreement. The KAPPA
coefficient is calculated according to Eq. (7).

Kappa =
Po−PE

1−PE
(7)

where

Po =
no. agreement

no. agreement + no. disagreement
(8)

and

PE =
N

∑
i=1

(pi1× pi2) (9)

where N is the number of categories, i is the index of cat-
egories, pi1 is the occurrence of proportion category i for
evaluator 1, pi2 is the occurrence of proportion category i for
evaluator 2. Table 4 shows the interpretation of the Kappa
Statistics according to [40] to assess whether a agreement is
reasonable.

Table 4. Kappa Statistics Strength Agreement.

Kappa Statistic Strength Agreement
< 0.0 Poor

0.00−0.20 Slight
0.21−0.40 Fair
0.41−0.60 Moderate
0.61−0.80 Substantial
0.81−1.00 Almost Perfect

3. Computational Experiments
The computational experiments described here were con-
ducted based in scikit-learn framework [35] and implemen-
tations adapted from [41], [42] and [43]. All codes and data
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Figure 5. Scheme showing the procedure used for one iteration.

are made available by the authors upon request. Computer
specifications used to execute ELM+DE are given as follows:
CPU AMD Opteron Processor 6272 (64 cores of 2.1GHz and
cache memory of 2MB), RAM of 250GB and operating sys-
tem Linux Ubuntu 14.04.4 LTS. In order to obtain consistent
and reliable results, 100 independent runs were performed
using 5-fold cross-validation with shuffled data generated by
different random seeds. Figure 5 shows the scheme represent-
ing the procedure used for one iteration. On average, each
iteration takes approximately 10 minutes (in the ELM case).

The parameter settings used in the evolutionary process
for ELM model selection are displayed in Table 5. CR was set
to 0.7 and F was randomly chosen in the interval [0.5, 1]. A
technique called Dither, proposed by [44], randomly selects
the parameter F from the interval [0.5, 1.0] for each genera-
tion or for each difference vector that significantly improves
convergence behavior, especially in noisy objective functions.
A total of 30 individuals evolved under 50 generations for
each run. The lower and upper bounds for the number of
neurons in the hidden layer were set to 1 and 300, respectively.
For each candidate solution, nine activation functions were
available according to Table 2 and α ∈ [0,1]. For the number
of neurons in the hidden layer and the activation function, the
nearest integer was used to define the parameters to be used
in the classifier. The objective function (to be maximized) is
the Accuracy given by Eq. (4).

Table 8 shows mean and standard deviation of the Accu-
racy, F1 and Recall for each class. It can be observed that
as classes C4 and C7 produced the best averaged values for
Accuracy, F1 and Recall. The results agreed with those ob-
tained by [25]: Classes C1 and C2 were associated with the
highest error rate (Limestone–Grainstone pair with respect to
their lithology and texture according to Table 1) and also poor
performance in class C5 justified by input data set limitations.

Table 5. DE parameter settings used in the optimization of
ELM hyperparameters.

Parameter Name Value/Range
CR Amplification factor 0.7
F Mutation rate [0.5, 1] (randomly chosen)

NP Population size 30
Jmax Number of generations 50
θL Lower bounds (θ1,θ2,θ3) = (1,0,0)
θU Upper bounds (θ1,θ2,θ3) = (300,9,1)

Fitness function Accuracy Eq. (4)

Table 9 exhibits the percentage of the samples. It can be
observed that the data used are unbalanced, which justifies
the accuracy values produced by the method. A discussion on
unbalanced lithologic datasets can be found in [45].

Figure 6 presents the confusion matrix of the seven petro-
graphic classes, where rows represent a classification, since
the columns represent a reference and a main diagonal rep-
resenting the correctness of the classification. It is observed
which petrographic classes are misclassified to other classes.
Overall, classes C4, C7 and C6 have the highest prediction
accuracy. In the class C1, 37% of the samples were classi-
fied as C2. Considering the class C2, 11% were predicted
as C1 and 8% as C3. For C3 samples 16% as C2, 18%, 2%
and 3% as C4, C6 and C7 respectively. For class C6 29%
of samples were predicted to be C7 while for class C7 13%
were considered as C6. This result may occur for C1 and C5
in cases where the lithology interpretations present possible
errors. For C5, there is only one sample, which was mostly
classified in C4 class due to their similarities in elastic, miner-
alogical and petrographic properties as can be seen in Table
1. Although ELM learned the training sample from C5, it did
not record how to generalize new situations, which represents
an overfitting problem.

In the barplot presented in Figure 7(a) one can observe
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Table 6. Mean and standard deviation of the Accuracy, F1, Kappa, Recall and R2 for 5-fold-cross-validation.
Reference Classifier Accuracy F1 Kappa Recall R2

This paper ELM 0.696±0.044 0.696±0.044 0.630±0.054 0.696±0.044 0.878±0.064
KNN 0.420±0.044 0.420±0.044 0.303±0.053 0.420±0.044 0.610±0.090
LDA 0.412±0.058 0.412±0.058 0.292±0.070 0.412±0.058 0.404±0.142

Ref. [26] – – – – – 0.8562(*)
(*) best result obtained in the training set

Table 7. Best model (according to accuracy) produced by the Differential Evolution (over 100 independent runs).
Parameters Accuracy F1 Kappa Recall R2

G = ReLU, α = 0.04170, HL = 21 0.800 0.800 0.756 0.800 0.896

Table 8. Mean and standard deviation of the Accuracy, F1,
and Recall, for each class, for 5-fold-cross-validation. A total
of 100 independent runs were performed.

Class # samples Accuracy F1 Recall
C1 5 0.565±0.290 0.494±0.240 0.473±0.256
C2 8 0.668±0.118 0.702±0.093 0.756±0.121
C3 6 0.638±0.173 0.571±0.134 0.532±0.139
C4 9 0.772±0.091 0.823±0.081 0.892±0.110
C5 1 0± 0 0±0 0±0
C6 4 0.725±0.192 0.682±0.174 0.676±0.219
C7 7 0.772±0.131 0.767±0.096 0.786±0.136

Table 9. Classes and Percentage of samples
Class Percentage of samples (%)

1 12.50
2 20.00
3 15.00
4 22.50
5 2.50
6 10.00
7 17.50

the higher frequencies are for the ReLU and Swish activation
functions. Figure 7(b) shows the optimal number of neurons
according to each activation function. As shown in the figure,
SoftLim and HardLim functions require a larger number of
neurons (on average) in the hidden layer: 236 and 204, respec-
tively. The larger number of neurons present by SoftLim and
HardLim when compared with other activaction functions is
explained due to the simplicity of its form. A high number of
neurons in the network increases its complexity but, as shown
in the figure, this complexity appears only 6 out 100 inde-
pendent runs. For the function ReLU the indicated number
of neurons is on average 26. Figure 7(c) shows the variation
of α according to the activation functions (G): ReLU and
Swich (selected 77 out 100 runs) produced the wide range of
parameter α .

Figure 8 shows a comparison of the activation function
and its derivative for ReLU and Swish. As depicted in the
figure, the functions and their derivatives of Swish and ReLU
behave very similarly. This similar behavior between Swish
and ReLU also leads to similar results in this work, where they

Figure 6. Confusion matrix plots on the test dataset.
Normalized entries were averaged over 100 independent runs.

have been chosen almost the same number of times and the
number of neurons is similar as well as the range of parameter
α .

Figure 9 shows boxplots of the Accuracy, F1, Kappa and
Recall according to activation functions. For all metrics,
ReLU and Swish have similar behavior considering the box-
plots. For mertic F1 the function ReLU obtained higher value,
followed by the Swish function. In relation a Kappa metric
ReLU presented great value and variety. The mean value 0.64
indicates substantially concordance with classification found
in [25].

According to [22], the Swish activation function presents
better performance when applied to Deep Learning techniques.
The simplicity of Swish and its similarity to ReLU means that
replacing the ReLU activation function in any network is
just a simple one line code change. The properties of one-
sided boundedness at zero, smoothness, and non-monotonicity
presented by Swish may be the reason of your efficacy, but
it is difficult to prove the cause of one activation function
outperforms another. Based upon the results obtained in this
paper, we can also observe that Swish shows competitive
results compared to ReLU when applied on traditional neural
models.

The construction of lithology databases often require a
subjective and manual process to interpret and classify the
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(a) G Frequency (b) Histogram HL x G (c) Boxplot α x G

Figure 7. Frequency of the activation functions (G) and the relation of the HL and α with G.
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Figure 8. Comparison between ReLU and Swish: activaction functions and derivatives.
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Figure 9. Boxplots showing performance measures accuracy, F1, Kappa and Recall as function of activation functions.

descriptive data. Although detailed, some inconsistencies can
be present in lithology descriptions, such as [46]: the infor-
mation recorded is dependent on the experience, skill, and
prior knowledge of the person recording the logs; lithology
databases often contain data collected over a period of many
years and generated by different drilling equipment and with
different aims and objectives. Another potential limitation is
the wide variation in composition of some common materials
[47]. As a result, in cases where lithology has been incorrectly
mapped in the original source data, or is not recorded due to
scale limitations, it can lead to poor results in the performance
of the classifiers.

The proposed approach produced a model with good clas-
sification accuracy (the best model presented in the Table 7 ob-
tained 80%), which can potentially help geologists/petrologists
in determining the heterogeneity of a reservoir. In addition,

specialists can apply the classification model to analyze a well
logging database during geological exploration, which also
provides an improvement in the efficiency of data analysis in
the oil industry.

We leave as future work to use techniques to generate syn-
thetic samples, since the number of samples in the database
is small and may interfere with the performance of compu-
tational methods in order to investigate if the methodology
will also perform effectively. Additionally, it is necessary to
use more databases and also compare the results obtained by
the ELM with other classification methods, such as Artificial
Neural Networks, Support Vector Machines, Decision Trees,
among others.
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4. Conclusions
In this paper we analyzed the use of the Differential Evo-
lution in the search for the optimal hyperparameters of the
Extreme Learning Machines classifier is applied for lithology
prediction from data that has elastic, mineralogical and pet-
rographic properties. A newly proposed activation function
called Swish was implemented and its performance was com-
pared with other well established activation functions in the
literature. It can be seen that the Swish function shown com-
petitive results in comparison with the ReLU when applied to
the problem in question. k-fold (k = 5) method is used as data
partitioning criterion for testing and training data sets sepa-
ration. We perform computational experiments and achieve
better results than those achieved by [26]. It is concluded
that the ELM is capable of assisting predicting lithology in
reservoirs. The developed computational tool assists in pet-
rographic data classification, helping the geologist to quickly
identify the degree of heterogeneity of the reservoir, there by
improving the process of reservoir characterization and the
production development planning.
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