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RESEARCH ARTICLE

Low-Latency f0 Estimation for the Finger Plucked Electric
Bass Guitar Using the Absolute Difference Function
Estimador de f0 de Baixa Latência para o Contrabaixo Elétrico Tocado com os Dedos
Usando a Função de Diferença Absoluta

Christhian Fonseca1,2*, Tiago Tavares1,2

Abstract: Audio-to-MIDI conversion can be used to allow digital musical control through an analog instrument.
Audio-to-MIDI converters rely on fundamental frequency estimators that are usually restricted to a minimum
delay of two fundamental periods. This delay is perceptible for the case of bass notes. In this dissertation, we
propose a low-latency fundamental frequency estimation method that relies on specific characteristics of the
electric bass guitar. By means of physical modeling and signal acquisition, we show that the assumptions
of this method are based on the generalization of all electric basses. We evaluated our method in a dataset
with musical notes played by diverse bassists. Results show that our method outperforms the Yin method in
low-latency settings, which indicates its suitability for low-latency audio-to-MIDI conversion of the electric bass
sound.
Keywords: Fundamental frequency estimation — Low latency — Audio-to-MIDI converter — Music information
retrieval — MIDI-bass

Resumo: A conversão de áudio para MIDI pode ser usada para permitir o controle musical digital por meio
de um instrumento analógico. Os conversores de áudio para MIDI dependem de estimadores de frequência
fundamental que são frequentemente restritos a um atraso mı́nimo de dois perı́odos da frequência fundamental.
Este atraso é perceptı́vel no caso de notas graves, pois as frequências fundamentais tem perı́odos mais longos.
Nesta dissertação, propõe-se um método de estimativa da frequência fundamental de baixa latência que se
baseia em caracterı́sticas especı́ficas do baixo elétrico. Por meio de modelagem fı́sica e aquisição de sinais,
mostramos que o método se baseia na generalização para todos os baixos elétricos. Avaliamos nosso método
em um conjunto de dados com notas musicais tocadas por diversos baixistas. Os resultados mostram que nosso
método supera o método Yin em configurações de baixa latência, o que indica sua adequação à conversão de
baixa latência de áudio em MIDI do som de baixo elétrico.
Palavras-Chave: Estimador de frequência fundamental — Conversor de áudio para MIDI de baixa latência —
Recuperação de informações musicais — Baixo MIDI
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1. Introduction

Digital instruments and controllers commonly use communi-
cation protocols such as the MIDI (Musical Instrument Digital
Interface) standard to communicate with each other. This al-
lows combining different digital synthesizers, controllers, and
effect racks, which expands the expressive possibilities related
to timbres, musical performances, musical recordings, and no-
tations [1]. This toolchain can also include analog instruments
by means of audio-to-MIDI converters [2].

Audio-to-MIDI converters are devices that aim at identify-

ing the notes played by an instrument in real-time or retrieving
them from an audio file. For such, they use a perceptual model
that relates the fundamental frequency (f0) of an audio signal
of a tonal sound to its pitch [3]. Many well-known algorithms
aim at estimating f0, such as the autocorrelation [4] and the
Yin method [5].

f0 estimators commonly aim at finding periodicity in a
signal s j. The periodicity is based on the model

st = st+kT0 , (1)

where T0 is the fundamental period of st and k ∈ Z. Methods



Low Latency f0 Estimator for the Electric Bass Guitar

that rely on this property commonly require analyzing at least
two fundamental periods of the signal. This incurs in a lower-
bound for the latency of Audio-to-MIDI conversion that can
be close to 50 ms for the lowest notes (41.2 Hz) in standard
4-string electric basses. These long delays are perceptually
detectable and this can impair the use of basses as a MIDI
controller.

In this work, we aimed at attenuating this problem using
an f0 estimation method especially crafted for the electric bass
guitar. The method exploits specific properties of the electric
bass guitar waveform. Our method allows f0 estimation with
an algorithmic latency of 1.1 times the fundamental period of
the signal, which is about 27 ms for the lowest frequency note
of the four-string traditional bass guitar.

Experimental results show that this method is effective
with an error rate of 15%. This is half the error rate of Yin, the
baseline method, when an equal latency is considered. The
method was tested for the frequency range from 41.2 Hz to
392 Hz, that is, from the lowest to the highest note of the
standard four-string electric bass guitar.

1.1 Pitch theory
Pitch is a psychoacoustical atribute of the sound given by the
auditory sensation often related to the perception of a repeti-
tion rate of a waveform [6] above 20 Hz, where it is perceived
not as rhythm but as tone. The lowest regular repetition rate
is called Fundamental Frequency (f0) and can be used to de-
compose harmonic complex tones into sinusoidal harmonic
components whose frequencies are multiple integers of the
fundamental frequency f0, that is:

st =
M

∑
m=1

am cos(2πm f0t +φm). (2)

The relative harmonic amplitudes am, among other atributes,
are commonly associated to timbre differences and the funda-
mental frequency f0 is closely related to the sensation of pitch
[7]. In this study, we assume that the fundamental frequency
is the physical counterpart of the psychological sensation of
tonality, commonly named as pitch, hence estimating the fun-
damental frequency is equivalent to finding the pitch of a
signal.

Moreover, perfectly periodic waveforms are rare, because
in the real world the signals differ between each repetition,
even if small. Thus it is interesting to extend the concept
of pitch to quasi-periodic signals, that is, waveforms that
are not perfectly identical in each cycle, but have reasonable
similarities between them to the point where they can be
identified as repetitions. Within this concept, the signals can
be modulated, turned off and on and yet have a pitch. Still,
there are exceptions to pitch determination by fundamental
frequency such as non-periodic but pitch-evoking signals [5].

The human ability to detect the pitch of a sound, that is,
human tonal perception, has been linked to biological traits
such as the periodicity of neural patterns [8] and the harmonic
partial pattern present by the cochlea [9]. Tonal perception

allows us to perceive the amount of repetition of events that
are too fast to be counted [10].

In music there are several standards that define the tuning
frequency for each note. The most commonly used nowadays
is called Pitch International Standard, which defines the fun-
damental frequency of the note A above middle C should be
440 Hz [11].

For the western music, in the equal tempered chromatic
system, the frequency variation between one note and the next
is 2

1
12 and the variation given an interval ∆notes of notes is

given by the equation [12]:

∆ f req = f12
∆notes

12 (3)

where f1 is the frequency of the lower note in the interval.

2. Related work
There are several methods that aim at finding the pitch of
periodic signals such as Maximum likelihood [13], Spectral
peak picking [14], Cepstrum [15], Harmonic Product e Sum
Spectrum [13]. Two of them, Autocorrelation and Yin Method,
were implemented and applied to a reference signal, which
is shown in Figure 1, of an excerpt from a recording of an
electric bass playing the note E0, which has approximately a
fundamental frequency of 41, 2Hz and a fundamental period
of 24.3 milliseconds.

Figure 1. Waveform from a electric bass guitar’s recorded
signal. f0 = 44.1Hz and T0 = 24.2ms. Its used as reference
signal for the application of the following pitch detection
methods.

2.1 Autocorrelation
It is possible to measure the similarity between two signals
using the correlation function, which compares and deter-
mines the similarity of two waveforms at different intervals. It
presents a function that shows how similar two similar signals
are for different intervals between the start of the two wave-
forms. Autocorrelation is the application of the correlation

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 4 • p.80/94 • 2020



Low Latency f0 Estimator for the Electric Bass Guitar

between a waveform and itself and is defined by the following
equation:

rt(τ) =
t+WL

∑
n=t+1

snsn+τ (4)

The autocorrelation rt(τ) is a measure of the similarity
between the signal sn and a temporally shifted version sn+τ of
itself analyzed over a window with length WL.

A common method for estimating pitch of periodic signals
is by detecting the greatest positive peak of the autocorrela-
tion function rt [4], as it presents peaks in values of τ that
correspond to the fundamental periods of sn. The fundamental
frequency f0 is calculated by:

f0 =
1

τmax
,τ > 0, (5)

tal que:

rt(τmax) = maxrt(τ) (6)

The autocorrelation function, when applied to a periodic
waveform, is also periodic, showing maxima when the time
lag τ is equal to or multiple of the fundamental signal period
and minimums when it is close to half of the period, as can
be seen in Figure 2, which shows the autocorrelation function
obtained from the reference signal, shown in Figure 1.

Figure 2. Autocorrelation function calculated from the
waveform in Figure 1. First peak after the initial one occurs
near 24.2ms, as expected.

2.2 Yin method
Autocorrelation, presented earlier, commonly peaks not only
with each waveform repetition but also due to the harmonics
present in the signal. This creates difficulties for fundamental
frequency estimators that use autocorrelation, as they are
eventually unable to determine if a peak is relative to the
fundamental frequency or signal harmonics.

The Yin method was proposed by Cheveigné and Kawa-
hara. It is based on the same assumptions as of the autocorrela-
tion method, with the addition of a series of modifications that

reduce errors. The name of the method (Yin) alludes to the Yin
and Yang of Eastern philosophy, alluding to the search for the
balance between autocorrelation and cancellation proposed
by the method to reduce errors.

The method consists in the application of 6 steps that
reduce the error rate in the fundamental frequency estimation
[5]. Next, we briefly describe the improvements applied to
each step according to the authors’ study information.

2.2.1 Step 1: The autocorrelation method
In the first step, the method uses autocorrelation, presented in
the previous subsection, obtaining an error rate of 10 % in the
estimate of f0 when applied to the database presented in the
study of its authors. As shown in the next steps, autocorrela-
tion will no longer be used by the method.

2.2.2 Step 2: Difference function
In the second step of the method, the autocorrelation func-
tion is replaced by the difference function, reducing the error
rate to 1.95%. Here the period is no longer defined by the
largest peak, but by the largest dip in the function. A pos-
sible cause for this reduction would be the high sensitivity
of autocorrelation to amplitude changes, so that, increases
in signal amplitude lead the method to choose correlation
function peaks from harmonics rather than fundamental ones.
Figure 3 presents the difference function calculated from the
waveform of Figure 1. The difference function is defined by
the equation:

dt(τ) =
WL

∑
n=1

(sn− sn+τ)
2. (7)

where sn is the input signal and sn+τ a τ samples shifted
version of itself analyzed over a window with length WL.

Figure 3. Difference function calculated from the waveform
in Figure 1. First big dip after the initial one occurs near 24.2
ms, as expected.

2.2.3 Step 3: Cumulative mean normalized difference func-
tion (CMNDF)

In the third step, the difference function is replaced by the
cumulative mean normalized difference function reducing the
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error rate a little more. As can be seen in Figure 4, unlike
the difference function, which starts at 0, the (CMNDF) starts
at 1, eliminating the need for an upper frequency limit. This
limit is required when the difference function is used, so that
the first dip does not be selected as the fundamental frequency
dip. The (CMNDF) is defined by:

d
′
t (τ) =


1 , if τ = 0

dt(τ)

(1/τ)
τ

∑
n=1

dt(n)
,otherwise

 (8)

where dt(τ) is the diference function defined in equation (7)
and τ the lag in samples between the signal and the shifted
version of itself in diference function.

Figure 4. Cumulative mean normalized difference function
calculated (CMNDF) from the waveform in Figure 1 and an
absolute threshold on dashed line. First big dip occurs near
24.2 ms, as expected.

2.2.4 Step 4: Absolute threshold
The fourth step is the use of an absolute threshold that de-
creases by approximately half the error rate obtained in the
previous step, which generates a normalized function. This
Absolute threshold is represented by the dashed horizontal
line in Figure 4. Using this threshold, dips above this value
are disregarded, avoiding the selection of harmonic generated
dips.

2.2.5 Step 5: Parabolic interpolation
In the fifth step, a parabolic interpolation of the minimum
location is included, but the reduction in the error rate is
minimal. The idea is that this reduces the error when the
period is not a multiple of the sampling period which could
lead to an error of up to half of the sampling period.

2.2.6 Step 6: Best local estimate
In the sixth step a new estimate is made, but now only in
the vicinity of the location indicated by the first estimate in
order to find the best local estimate. Seeking around 20%
variation around the initial estimate, we obtained a reduction

of approximately 1/3 in the error rate compared to the previous
step.

Version Error rate (%)
Step 1 10
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50

Table 1. Error rates after application of each step of Yin
method.

According to the study of Cheveigné and Kawahara (2002),
the error rates obtained by the Yin method are about one-third
times lower than the best competing methods, as evaluated
over a database of speech recorded together with a laryngo-
graph signal. The error rates at each step are shown in table
1.

2.3 Discussion about pitch estimation methods
Many methods, such as those discussed in the previous section,
directly rely on the periodicity property as stated in Equation
1 or the harmonic series model shown in Equation 2. This
allows them to be applicable for the general case of finding
pitch in periodic signals, but bounds them to a minimum delay
of twice the fundamental period.

In this work, we propose a pitch detection method that
relies on specific characteristics of the plucked electric bass
string. This restricts our method to signals generated by this
specific instrument. However, it allows reducing the delay to
1.1 times the fundamental period, which is very close to the
theoretical minimum latency.

This reduction is critical for real-time pitch detection in
lower-pitch notes. In this range of notes, general-purpose
methods require a delay of around 50ms to work properly.
Our method allows detecting the same pitch with a delay of
around 30ms.

The method proposed by [2] also indicates to estimate f0
close to the theoretical minimum latency, i.e. the fundamental
period of the lowest observable pitch, but with higher compu-
tational complexity, which can be problematic for embedded
real-time applications, which can lead to an increase in delay
due to computational cost.

The proposed method is based on specific properties of
the plucked electric bass signal. These properties are analyzed
using a physical model, which guides its generalization pos-
sibilities. Then, the proposed model is compared to the Yin
method using a dataset containing recordings from electric
bass guitars.

For comparison purposes, the Yin method was chosen
as the reference method. In addition to presenting excellent
performance as shown in [5] study, it is commonly used as
a reference method, as in the study by [2], addressed in this
work. It was also chosen because it is a well-known and cited
method, as in the works of [16] and [17], also cited in this
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work, counting more than 1300 citations according to the
portal [18].

2.4 Latency
The human perception of sounds is very sensitive to its tempo-
ral characteristics. Therefore, audio delays are experienced in
many different scenarios and for many different reasons and
is called latency. In the context of this work, the sound delay
refers to the time elapsed between an initial event, such as
playing a note on the electric bass guitar, for example, and a
second event, such as the moment when the sound is perceived
by a specific listener.

When you hear the sound from a sound source a few
meters away, there is a delay due to the amount of time it
takes for this sound to travel through space over that distance.
For example, in a room with a temperature of 20oC, the speed
of sound is approximately 323.3 meters per second, which
causes a delay of 2.91 milliseconds per meter of distance
between the sound source and the listener. This delay or the
delay between two sound events can be large enough to be
noticed and often causing several negative effects.

In music applications latency can be a very serious prob-
lem as it directly impacts musicians’ performance in many
ways, making it difficult to maintain steady tempo, rhythmic
synchronism between musicians and even tuning depending
on the instrument [19].

2.5 Causes for Latency
There are many causes of unwanted delays. In orchestras, for
example, musicians on opposite sides can experience latencies
of up to 80 milliseconds due to the time it takes the sound
to propagate through the distance between one musician and
another. Nowadays in most current performances, musicians
use close speakers and headsets as feedback, most of the
latency comes from processing audio signals [19].

Digital processing of an instrument’s audio signal implies
a series of delays, starting with converting the analog to a
digital signal at the system input and from digital to analog
at the output. Buffering digital samples and phase delay of
digital filters also add latency. Finally, the time required for
processing the audio samples according to the applications
used [20].

In the case of audio-to-midi converters, besides the time
spent performing the algorithm operations to determine the
fundamental frequency of the signal, there is still the necessary
interval from the onset of a note played on the instrument for
the algorithm to estimate what is the fundamental frequency.
Most f0 estimators need at least two periods to accomplish its
task.

2.6 Tolerable Latency
The perception of how much a certain amount of latency
bothers, hinders, or even precludes the correct use of the in-
strument by the musician depends on the type of instrument
played and also on the musician’s listening skills. For exam-
ple, musicians such as professional saxophonists are more

affected by latency and need more immediate feedback, con-
sidering a latency of up to 10 milliseconds as acceptable, while
keyboard players have a higher latency tolerance, considering
latencies of up to 40.5 milliseconds as acceptable [21].

A previous study [21] has investigated the acceptable la-
tency in live sound applications for different professional mu-
sicians using in-ear monitoring (IEM) or wedge monitoring.
The results of this study are presented in Table 2.

2.6.1 Latency Discussion
Table 2 shows that professional bassists consider a latency
of up to 30 milliseconds acceptable when using wedge mon-
itoring. However, as already seen, most algorithms require
the use of at least two periods to estimate f0, and the lowest
note of a traditional four-string bass, E0, has a period of 24.27
milliseconds. That is, only the algorithmic delay for these
methods is at least 2×24.27 = 48.54 milliseconds.

The method proposed in this study estimates the funda-
mental frequency using a time interval of 1.1 times the period,
starting from the note onset. For the same note E0, the al-
gorithmic delay is 1.1×24.57 = 26.697 milliseconds, within
the latency considered acceptable by professional bassists.

3. Methodology

3.1 Time-domain Behavior of a Plucked String
This section discusses the properties of the plucked string
signal that were used as a basis for our f0 estimation method.
These properties were inferred by analyzing the audio signal
of an electric bass string, as shown in Section 3.2, then the
physical model discussed in Section 3.3 was used to generalize
these results, as shown in Section 3.4.

3.2 Plucking an Electric Bass String
The traditional electric bass guitar is an electro-acoustic in-
strument with a body and neck made of wood and four metal
string tuned to E, A, G and D, which are fixed in a metal
bridge on the body and in the nuts of the neck. The neck
has a fingerboard with 20 to 24 frets which divides it in tonal
areas. The index and middle fingers of the right hand are
used to pluck the strings and the fingertips of the left hand
are used to hold the strings against the fretted fingerboard.
This changes the free length of the string, which modulates
its natural oscillation frequency.

There are magnetic pickups placed on the body of the in-
strument, under the strings. They convert the string transverse
velocity at its position into an electric voltage. The string
transverse velocity can be seen as a wave that propagates
from the pluck position along the string length, reflecting and
inverting when reaching the string end, as shown in Figure 5.

The waveform of the voltage signal at the pickups, as
shown in Figure 8, indicates repetitions of a peak (positive or
negative) at the beginning of each cycle. In order to confirm
that this characteristic is maintained for all the electric bass
guitars (instead of being a characteristic of the specific instru-
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Latency (ms) Sax Vocals Guitar Drums Bass Keys
IEM Good 0 1 4.5 8 4.5 27
Wedge Good 1.5 10 6.5 9 8 22
IEM Fair 3 6.5 14.5 54.5 25.5 46
Wedge fair 10 26 16 25 30 40.5

Table 2. Tolerable latency - Instruments comparison using in ear monitoring (IEM) and wedge monitoring [21]

Figure 5. Position and velocity of a string along the x axis at different times t with fixed ends at x = 0 and x = L

ment), the behavior of its string was mathematically modeled,
as discussed in the next section.

3.3 Physical model
The behavior of the bass string can be modelled using an ideal
string along the coordinate x with fixed ends at x = 0 and
x = L with a transversal displacement along the coordinate y,
which give us the following boundary conditions:

y(x = 0, t) = 0. (9)

y(x = L, t) = 0. (10)

The string has linear density µ and is stretched with a
force FT . It is initially at rest and is plucked in the position
x = xp with amplitude y(xp,0) = A as depicted in Figure 6. In
this situation, the initial transverse displacement y(x,0) can
be expressed by

y(x, t = 0) =

{
A( x

xp
) , if x < xp

A(1− x−xp
L−xp

) ,otherwise

}
(11)

Figure 6. String with fixed ends at x = 0 and x = L being
plucked at x = xp with transversal displacement y(xp) = A.

Initially, the velocity distribution y′(0,x) is:

y′(x, t = 0) = 0. (12)

As depicted in Figure 7, for a short segment of this string
between x and ∆x there is a slope δy/δx = tan(θ) and a
vertical force F defined by:

F = FT sin(θ(x+∆x))−FT sin(θ(x)) (13)

If y corresponds to a small displacement, θ is also small
and can be approximated using sin(θ)≈ tan(θ) and tan(θ) =
∂y
∂x . This allows re-writing Equation (13) as:

F = FT (
∂y
∂x

(x+∆x)− ∂y
∂x

(x)) (14)
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Figure 7. Short segment of a string between (x,y) and
(x+∆x,y+∆y) where a tension FT is applied.

Using the Newton’s second law:

F = m
∂ 2y
∂ t2 (15)

and knowing that the mass for this string segment is m = µ∆x,
we have:

FT (
∂y
∂x

(x+∆x)− ∂y
∂x

(x)) = µ∆x
∂ 2y
∂ t2 (16)

dividing both sides of Equation (16) by ∆x, applying the
second derivative definition with ∆x −→ 0 and making c =√

FT/µ , it becomes the wave equation:

∂ 2y
∂ t2 = c2 ∂ 2y

∂x2 , x ∈ (0,L), t ∈ (0, t f ] (17)

This model was used to simulate plucked strings and the
resulting waveforms were compared to measured waveforms,
as discussed in Section 3.4.

3.4 Plucked string simulation
Equation 17 was numerically solved using the finite difference
method [22] and the algorithmic steps used by Langtangen
[23]. The Taylor series expansion was used to approximate it
as:

y(x+∂x, t)−2y(x, t)+ y(x−∂x, t)
∂x2 =

1
c2

y(x, t +∂ t)−2y(x, t)+ y(x, t +∂ t)
∂ t2

(18)

Using the i, j notation such that y(x, t) = yi j, inserting the
wave number C = c∂ t

∂x and rearranging Equation 18 yields:

yi, j+1 =C2yi−1, j +2(1−C2)yi, j +C2yi+1, j−yi, j−1. (19)

To calculate the value of this function in the first time step,
yi, j−1 must be determined. This can be done using the initial
velocity in Equation 12 and Tailor’s series as follows:

y(x, t +∂ t)− y(x, t−∂ t)
2∂ t

= 0. (20)

Rearranging equation 20 and rewriting in the i, j notation,
we find that:

yi, j−1 = yi, j+1. (21)

Finally, replacing yi, j−1 by yi, j+1 in Equation 19, isolating
yi, j−1 and dividing both sides by 2, we have:

yi, j+1 =
C2

2
yi−1, j +(1−C2)yi, j +

C2

2
yi+1, j, (22)

which is the finite difference scheme. The numerical simu-
lation was executed over the discrete spatial domain [0,L]
equally spaced by ∂x and over the discrete temporal domain
[0,T ] equally spaced by ∂ t.

The model’s pluck position xp = L/5 and the string length
L = 0.87m were directly measured from the strings of an
electric bass. The wave velocity c was calculated using c =
f/(2L) [12] related to note E0. The simulation time was
define as t f = 0.05s.

Over the spatial domain, the algorithm computes yi,0 using
Equation 11 and yi,1 using Equation 22 and applying the
boundary conditions from Equations 9 and 10. Then, for each
element j from temporal domain, apply Equation 19 to find
yi, j+1 for each element i from the spatial domain, applying
the boundary conditions again.

The output simulated signal was retrieved from the string
velocity in the position x = L/5, approximately the pickup
position, and was yielded to a 5th order low-pass Butter-
worth filter with a 150Hz cutoff frequency. This simulates the
smoother bend of the string due to its stiffness and the soft
touch from the fingertip, which are responsible for generat-
ing tones with weaker high-frequency components [24]. The
resulting signals were compared to the recorded signals, as
shown in Figure 8.

Figure 8 shows that the physical model generates shapes
that are similar to those found in the acquired signals. This
means that the peak behavior is not a particular behavior of
the specific electric basses that were used in our acquisitions.
Rather, this behavior can be expected to appear in electric
basses in general, hence it can be used for further steps in
fundamental frequency estimation.

4. Fundamental Frequency Estimation
The simulated and measured waveforms in Figure 8 show that
there is a peak at the onset of the note and at the beginning
of each cycle after it. These peaks have approximately the
same width, regardless of the note’s frequency, and the note’s
fundamental frequency occurs due to the rate in which peaks
appear in the signal. The proposed method is based on these
two characteristics, as follows:

As it is a proposal for analysis in real-time, the signal
coming from the electric bass guitar must be analyzed contin-
uously, that is, the analog electrical signal must be converted
to digital and the samples saved in a buffer for analysis. For
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Figure 8. Simulated and measured notes played on string E of the electric bass guitar (a) E0 (b) A]0 (c) F1 (d) A1

each new sample obtained, the buffer must be updated, elimi-
nating the “oldest” sample from it. A flowchart of the entire
algorithm process is presented in Figure 9.

4.1 Detect onset
Initially, it is necessary to detect the onset of the note that will
be played on the instrument. There are several methods for
detecting onsets that can be applied in this case, according to
the study by [25]. As in the case of the electric bass guitar,
there is usually a rapid and considerable increase in relative
energy when a note is played, it is proposed to use the method
based on the energy function:

Enn =
1

Nen

Nen

∑
n=1
|sn|2, (23)

where Nen is the length of the analysis window. A note onset
is detected when the energy variation is positive and bigger
than a threshold value.

4.2 Determine starting peak
When onset is detected, the algorithm will seek to determine
the initial peak in the buffer, as expected according to figure
10. The instant of occurrence of this peak is used to define the
start time of the short W -size integration window, also shown
in Figure 10, which will be used in the following steps in the
application of the absolute difference function.

4.3 Detect if there is enough data
The W size of the short integration window is one of the input
parameters of the algorithm and must be less than half the
width of the initial peak. Bearing in mind that for the same

string, the width of this peak remains approximately constant,
regardless of the note.

To perform the next step, it is necessary to check if the
number of samples available in the buffer generated after the
initial peak is greater than W , as an onset can be detected so
quickly that the analyzed signal has not yet toured enough for
the generation of the samples necessary for the application of
the absolute difference function.

4.4 Absolute difference function
The next step is to apply the absolute difference function to
the W length section of the signal available in the buffer. In
the initial instant, this signal will be exactly the same as the
short integration window itself, that is, the result will be zero.
For each new sample that becomes available in the buffer,
the absolute difference function is applied again, keeping the
same short integration window samples, but comparing it to
a new signal segment, which contains the new sample made
available and does not contain the sample from the ”oldest”
instant.

The absolute difference function is defined as:

d(τ) =
W

∑
n=1
|sn− sn+τ |, (24)

where τ is the temporal lag between the initial peak and the
analized section from the audio signal sn. So we are measuring
the absolute difference between the first moments of the signal
after the initial peak in relation to the following sections of
this same signal, resulting in a function like the one illustrated
in Figure 11.
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Figure 9. Proposed method flowchart process.

The absolute difference function must be applied to each
buffer update until it has passed, from the initial peak, an
interval of 1.1 times the fundamental period T0 of the lowest

frequency to be detected. Theoretically, this interval could
be T0 +W , but the first cycle from the onset is subject to
harmonics that can vary the interval between the first two
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Figure 10. Analyzed signal sn and integration short window
with size W . This signal is a recording of the G0 note played
on the E string of an electric bass guitar

Figure 11. Absolute difference function from the analyzed
signal sn from figure 10 and threshold value represented as
the horizontal dotted line

peaks of the signal. Thus, 1.1×T0 gives a margin of tolerance.

4.5 Find local minima
In sequence, the algorithm searches for local minima in the
absolute difference function, referenced as dips in Figure 11.
For the lowest notes, there will be only a local minimum
as depicted in Figure 11, from which we will obtain the τ0
interval. For the highest notes, as exemplified in Figure 12,
there may be 2 or 3 local minimums, as depicture in Figure
13, depending on how many frets the bass has. In this case, τ0
is obtained by:

τ0 =
Nτ

∑
n=1

τn

n
, (25)

where Nτ is the number of local minimums and τn is the tem-
poral lag between the initial peak and nTH local minimums.

4.6 Determine f0
Since τ0 represents the interval in which the signal most seems
to repeat its initial stretch, we define that the fundamental
period of the T0 signal is equal to τ0. Thus we determine the
fundamental frequency f0 of the signal as:

f0 =
1
T0

(26)

Therefore, briefly, the proposed method consists of the
application of the signal to an absolute difference with a win-
dow size W shorter than half-width of this first peak as shown

Figure 12. Analyzed signal sn and integration short window
with size W . This signal is a recording of the G1 note played
on the E string of an electric bass guitar

Figure 13. Absolute difference function from the analyzed
signal sn from figure 12 and threshold value represented as
the horizontal dotted line

in Figure 10. This thin window plays an important role to
make it possible for the method to find f0 after 1.1 times the
fundamental period, whereas the Yin method needs more than
two fundamental periods [5], as shown in Figure 14.

5. Experiments and results

5.1 Dataset
The proposed method was tested using a set of audio record-
ings acquired from 3 different electric bass guitars. Each of
them was played by a different musician, and all of them used
the finger-plucking technique. All notes within the instru-
ment’s range were recorded from each of the guitars, using
two different instrument equalizations (full bass and full tre-
ble). This yielded 528 recordings, which were all manually
cropped to start at the note onset since the proposed method
does not have a note onset detector.

5.2 Experiments
This section describes experiments that compare the proposed
method to the Yin method [5], as implemented by Guyot
[26]. The experiments comprised executing both the proposed
method and the Yin method to estimate the f0 in the dataset
samples.

5.2.1 Test 1 - sample length for note
In this first test, the sample length provided as input parame-
ters for the algorithms is equal to 1.1×Tt1× f s, being Tt1 the
fundamental period of the expected note and f s the sampling
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Figure 14. Algorithmic delay for the proposed method and for the Yin method.

frequency of the digital audio signal. To serve as a reference,
the test was repeated for the Yin method with a sample length
equal to 2.1×Tt1× f s and is referenced as ”Yin2” in Figure
16 (a).

5.2.2 Test 2 - sample length for string
This second test is a more common application for a pitch
detector in a string instrument, where the fundamental fre-
quency should be estimated from a range of approximately 2
octaves. So, the sample length provided as input parameters
for the algorithms is equal to 1.1× Tt2× f s, being Tt2 the
fundamental period of the lower note from the specific string
to which the recorded note belongs. Also, in this case, the test
was repeated for the Yin method with a sample length equal
to 2.1×Tt2× f s and is referenced as ”Yin2” in Figure 16 (b).

Figure 15 compares the length of the samples used in test
1, shown in the first column, and test 2, shown in the second
column of the figure.

To determined if the method fails, the MIDI note corre-
spondent to the fundamental frequency estimated is calculated
as:

Mnote = 12log
(

f0

16.351597

)
1

log(2)
, (27)

where f0 is the estimated fundamental frequency and 16.351597
is the f0 for the MIDI note = 0. The result is rounded to the
nearest integer. If the calculated MIDI note differs from the
expected one, it is counted as one error.

5.3 Proposed method applied to other musical in-
struments

The proposed method was developed based on specific char-
acteristics of the electric bass waveform when played using
the finger plucking technique. These characteristics were
observed in samples of recordings made with the referred
instrument and mathematically modeled to guarantee that
they will be present in the waveforms generated by electric
basses in general. As these characteristics may be also present
in waveforms generated by other instruments, this section

Figure 15. sample lengths for test 1 in the first column and
for test 2 in the second column

presents the results of applying the method to audio samples
of some other instruments in order to indicate promising paths
for future work in the expansion of the method application.

The samples of musical instruments analyzed below were
obtained from the soundbank of the FreePats project [27].
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Figure 16. (a) Test 1 error rates . (b) Test 2 error rates

5.3.1 Electric Guitar
The waveforms illustrated in Figure 17 (a) and (c) were ob-
tained from recorded samples from the Fender Telecaster
Electric Guitar, direct from its bridge pickup output.

From the analyzed waveforms we can find the main char-
acteristics for the application of the proposed method. The
signal generated by the electric guitar shows sharp peaks at
the beginning of each cycle and that varies little in relation to
the note played.

The proposed method was able to detect the fundamental
frequency of the analyzed signals, presenting local minimums
at the waveform repetition points, as can be seen in Figure 17
(b) and (d).

5.3.2 Acoustic Guitar
The waveforms illustrated in Figure 18 (a) and (c) were ob-
tained from samples recorded from a Spanish classical guitar
through a microphone.

The analyzed waveforms do not have the necessary char-
acteristics for the application of the proposed method. Con-
sequently, the application of the absolute difference function
does not have a function that allows us to determine the fun-
damental frequency, as shown in the figure 18 (b) and (d).

Observing the waveform of the figure 19 it is possible to
notice that in the first moments after the note onset there is
a strong presence of harmonics, probably due to the contact
between the musician’s nail and the instrument’s nylon string,
which hinder the use of the proposed method. Another factor
responsible for the big difference in the waveform is the cap-
ture method, which was made by a microphone, adding to the
signal the effects of room reverberation.

5.3.3 Upright Piano
The waveforms illustrated in Figure 20 (a) and (c) were ob-
tained from samples recorded from a Kawai upright piano,
located in a living room through a microphone positioned in
front of the piano, approximately at the place where the head
of a piano player would be.

Again, the analyzed waveforms do not have the necessary
characteristics for the application of the proposed method.
Consequently, the application of the absolute difference func-
tion does not have a function that allows us to determine the
fundamental frequency, as shown in the figure 18 (b) and (d).

From the waveform shown in figure 21 it is possible to no-
tice that there is a strong presence of harmonics along with the
signal, probably due to the impact of the hammer on the string
and the construction of the instrument that differs greatly from
the electric bass. Therefore, the use of the proposed method
for this type of instrument also seems unfeasible.

5.3.4 Wooden Recorder
The waveforms illustrated in Figure 22 (a) and (c) were
obtained from samples recorded from a ”Venus” wooden
recorder through a microphone.

This is yet another case where the analyzed waveforms do
not have the characteristics that supported the development
of the proposed method. However, as the signal generated by
this instrument has few harmonics, approaching a sinusoid,
the application of the absolute difference function generated
a signal with local minimums at the beginning of each cycle,
as shown in the figure 22 (b) and (d), making it possible to
determine the fundamental frequency.

As may be observed in figure 23, this instrument has a
relatively slow attack so that the initial peak detected in the
onset has a lower amplitude than the following peaks. De-
pending on how big this difference is, the point of occurrence
of the local minima of the absolute difference function can be
changed enough to cause the error of the note determined by
the method.

5.4 Discussion
The error rates presented in Figure 16 show that the proposed
method had less than half of the Yin method’s error rate, so
having a better performance estimating f0 on both tests.

It is important to note that the tests refer to a very specific
condition, as they aim to verify the performance of the meth-
ods to determine the fundamental frequency of notes played
on a specific musical instrument, the electric bass, right af-
ter its first oscillation cycle. In addition, the method was
tested for the frequency range from 41.2 Hz to 392 Hz, that is,
from the lowest to the highest note of the standard four-string
electric bass.

As expected, the Yin method is a better solution when sam-
ple length is longer than 2 cycles of the fundamental period,
but for the string E of an electric bass guitar, the algorithmic
delay is higher than 50 ms (2/ f 0 = 2,1/41.20Hz≈ 0,051s),
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Figure 17. Analyzed signals from an electric guitar: (a) note E1; (c) note E2. Absolute difference function: (b) from signal in
Figure (a); (d) from signal in Figure (c).

Figure 18. Analyzed signals from an acoustic guitar: (a) note E1; (c) note E2. Absolute difference function: (b) from signal in
Figure(a); (d) from signal in Figure (c).

Figure 19. Waveform from an acoustic guitar attack and first cycles.

which is perceptible for a bass player, making it harder to
play the bass guitar with real-time MIDI outputs, as shown in

the [21] study, where professional bassists deemed acceptable
latencies of up to 30 ms.
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Figure 20. Analyzed signals from an Upright Piano: (a) note A0; (c) note A1. Absolute difference function: (b) from signal in
Figure(a); (d) from signal in Figure (c).

Figure 21. Waveform from an Upright Piano attack and first cycles.

Figure 22. Analyzed signals from a wooden recorder: (a) note A5; (c) note A6. Absolute difference function: (b) from signal in
Figure(a); (d) from signal in Figure (c).
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Figure 23. Waveform from an wooden recorder attack and first cycles.

The study on the application of the proposed method to
other musical instruments indicated that there is a possibil-
ity of obtaining good results with the electric guitar. This is
due to the fact that the instruments share many constructive
characteristics, such as metallic strings and capture by electro-
magnetic pickups. For the acoustic guitar and upright piano,
the results were not promising. The waveforms generated by
these instruments are quite different from those generated by
the electric bass, mainly because the sound generated is not a
simple capture of the vibrating string, but rather the vibration
of its entire structure. Finally, the method even proved to be
reasonably applicable to the Wooden Recorder, but as this
instrument reproduces high notes, more accurate methods that
use more than two cycles for the detection of the pitch will
not present great latencies.

6. Conclusion
A method based on the absolute difference function and the
waveforms from a finger plucked strings of an electric bass
guitar was presented. It was tested over 528 notes recorded
from three different bass guitars and it shows to be capable
to estimate these notes from samples with length equal to 1.1
times their fundamental periods, while our reference method,
Yin, under the same conditions, had double the error rate. This
shorter algorithmic delay, near the minimal theoretical delay
(one fundamental period) and low computational complexity,
makes the proposed method suitable for real-time applications
for the electric bass guitar, such as a MIDI bass guitar.

However the method missed 15% of the notes on test 2,
which is a similar application, so future studies should be
made to improve these results. An approach to reduce errors,
unrelated to improvements in the method, would be to adopt
a specific way of playing the musical instrument. If the bass
player always plucks the string smoothly, in order to keep the
first cycles of the signal similar to the modeled ones, error
rates can be drastically improved. It can be a useful alternative
way to a MIDI bass guitar, where the way you pluck the strings
will not affect the sound timber. But, clearly, this imposes
a limited way to play in exchange for a more precise note
detection and lower latency

Also, the method was not tested for notes played on top
of an already vibrating string which certainly should make it
harder to estimate the correct f0. However, it is possible that
contact with the plucking finger, at the moment of playing the
new note, dampens the string enough to not interfere with the

performance of the method. This case will be approached in
future work.

The method is applicable for pitch determination for mono-
phonic electric bass signals, so in a real application, it would
be necessary to use individual pickups per string, so that each
generated signal can be analyzed individually and ensuring
that there will be no more than one note simultaneously for
each signal. In addition, the method requires a quick onsets
detector, which provides the information that a note has been
played to begin the analysis process.

A promising path for future work would be the develop-
ment of a hybrid method, which uses the proposed method for
rapid pitch detection in low notes and another more accurate
method using at least two cycles, such as Yin, for higher notes.
Thus, adjusting the proposed method to provide an estimate
after an analysis window of 1.1 times the period of the lowest
fundamental frequency, and the second method to provide an
estimate as soon as it is obtained, that is, after two cycles of
the analyzed frequency, we will have the following process:
if the note is high, the second method will offer the estimate
before the end of the analysis of the proposed method, other-
wise the proposed method will provide its estimate, avoiding
greater latencies.

Finally, future works can study how the use of the reed to
play the strings affects the error rates, which could allow the
application of the method for the electric guitar, an instrument
that indicated to have similar characteristics in the waveforms,
from those used in the analysis by the proposed method.
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