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A Multi-objective Version of the Lin-Kernighan Heuristic
for the Traveling Salesman Problem
Uma Versão Multiobjetivo da Heurı́stica Lin-Kernighan para o Problema do Caixeiro
Viajante

Emerson B. de Carvalho1, Elizabeth F. G. Goldbarg2* and Marco C. Goldbarg2

Abstract: The Lin and Kernighan’s algorithm (LK) for the single objective Traveling Salesman Problem (TSP) is
one of the most efficient heuristics for the symmetric case. Although many algorithms for the TSP were extended
to the multi-objective version of the problem (MTSP), the LK was still not fully explored. Works that applied the
LK for the MTSP were driven to weighted sum versions of the problem. We investigate the LK from a Pareto
dominance perspective. The multi-objective LK was implemented within two local search schemes and applied
to 2 to 4-objective instances. The results showed that the proposed algorithmic variants obtained better results
than a state-of-the-art algorithm.
Keywords: multi-objective traveling salesman — multi-objective lin and kernighan — local search

Resumo: O algoritmo de Lin e Kernighan (LK) para o Problema do Caixeiro Viajante mono-objetivo (PCV) é
uma das heurı́sticas mais eficientes para o caso simétrico. Embora muitos algoritmos para o PCV tenham
sido estendidos para a versão multiobjetivo do problema (PCVM), o LK ainda não foi plenamente explorado.
Trabalhos que aplicaram o LK ao PCVM foram direcionados a versões do problema de somas ponderadas. Nós
investigamos o LK sob a perspectiva da dominância de Pareto. O LK multiobjetivo foi implementado em dois
esquemas de busca local e aplicado a instâncias de 2 a 4 objetivos. Os resultados mostraram que as variantes
algorı́tmicas propostas obtiveram melhores resultados que um algoritmo do estado-da-arte.
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1. Introduction

The Lin and Kernighan’s algorithm (LK) [1] is one of the most
effective heuristics proposed for the single objective Traveling
Salesman Problem (TSP). The TSP is a well-known NP-hard
combinatorial optimization problem that models a variety of
practical applications and has been a testbed for several al-
gorithmic ideas. A book devoted to the TSP was presented
by [2] in which several LK implementations were presented.
The most effective LK implementation was presented in [3]
and another popular implementation is part of an exact algo-
rithm proposed in [4]. Besides, the LK has been used as part
of several metaheuristics, some of them investigated in an
experimental study presented in [5].

The multi-objective TSP (MTSP) is a generalization of the
single objective problem which also models several important
real world applications. As its single objective counterpart,
many algorithmic approaches were proposed to the MTSP,

most of them heuristics. Some of those algorithms are adap-
tations of effective methods originally designed for the TSP.
Although the LK is an effective heuristic for the TSP, it is
still not fully explored in the multi-objective context. In [6]
[7] [8], a linear aggregation of the objectives was applied to
the problem and the LK was the local search method used to
find good approximations of supported solutions. As far as
we are concerned no multi-objective versions of the LK were
investigated to the MTSP.

We present a multi-objective version of the LK algorithm,
named MLK, and investigate its potential in comparison with
other local search methods. As local search algorithms are
widely used within metaheuristics, the approach proposed in
this study can be used within other heuristic methods and has
the potential to improve their results. In this study, the MLK
is investigated in the Pareto Local Search (PLS) frameworks
proposed in [9] and [10]. As a result, two variants of the MLK
were implemented and investigated in a computational experi-
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ment that comprised 34 instances with 2, 3 and 4 objectives
and sizes ranging from 100 to 1000.

This study is organized into five sections. The MTSP
is presented in section 2. The MLK and the variants are
introduced in section 3. The computational experiments are
reported in section 4. Finally, conclusions and other remarks
are presented in section 5.

2. The Multi-objective Traveling Salesman
Problem

A multi-objective optimization problem consists in the si-
multaneous optimization of p objective functions zk(ρ), k =
1, . . . , p, subject to some constraints on the decision vector
ρ ∈ P, where P is a subset of ℜn, the real coordinate space
of n dimensions . It is usually assumed that there does not
exist any ρ ∈ P, such that all functions zk attain their minima
at ρ [11]. The MTSP is defined as in [12]. Given an undi-
rected edge-weighted complete graph G = (V,E,W ), where
V = {1, ...,n} is the set of vertices, E = {(i, j)|i, j ∈V, i 6= j}
is the set of edges and W a set of vectors (w1

i j, ...,w
p
i j) each

of which assigned to an edge (i, j) ∈ E, p > 1, the MTSP
consists in finding a minimal spanning cycle of G according
to equation 1. The term “minimal” refers to Pareto optimal-
ity. The p weights assigned to each edge of G correspond to
different cost factors, usually conflicting.

zk(ρ) =
n−1

∑
i=1

wk
ρ(i),ρ(i+1)+wk

ρ(n),ρ(1), k = 1, ..., p (1)

The set of Pareto optimal solutions is determined by dom-
inance relations between the objective vectors. Let ρ =
(ρ1, ...,ρn) be a solution of the MSTP and zk(ρ), computed
with equation 1, be its objective vector, also called objective
point, a solution ρ , is said to weakly dominate ρ , denoted by
ρ , � ρ , if zk(ρ

,)≤ zk(ρ), ∀k,k = 1, ..., p. ρ , is said to domi-
nate ρ , denoted by ρ , ≺ ρ , if zk(ρ

,)≤ zk(ρ), ∀k,k = 1, ..., p,
and ∃k such that zk(ρ

,)< zk(ρ). Solutions ρ and ρ , are said
incomparable, denoted by ρ ,||ρ , when neither ρ , ≺ ρ nor
ρ ≺ ρ ,. Given the objective space of the MTSP, the set of
incomparable solutions is the Pareto optimal set, also called
set of efficient solutions.

The number of efficient solutions for the MTSP is ex-
pected to be exponential on n. Since the single objective
problem belongs to NP-hard [13], the multi-objective version
is also in this class. Besides, it implies solution of a possibly
exponential number of NP-hard problems to determine the set
of efficient solutions [14].

2.1 Related work
Exact methods for the MTSP include dynamic programming
[15] and the ε-constraint method with branch-and-cut [16].
The main part of the literature dedicated to the MTSP refers
to heuristic approaches such as local search [17, 18, 19, 12,

9, 20], evolutionary algorithms [21, 22, 6, 23, 24], ant colony
[25] and estimation distribution algorithms [26].

Local search methods are among the most effective for the
MTSP, and most works propose algorithms that use the 2 and
3-opt methods. One of the first local search approaches for this
problem was proposed in [20]. It was called Two-Phase Local
Search (TPLS). Two TPLS variants, the Double Two-Phase
Local Search (D-TPLS) and the Pareto Double Two-Phase
Local Search (PD-TPLS), were also introduced in [20]. The
TPLS consists of two phases. First, the method creates a so-
lution optimizing one objective. The solution generated in
the first phase is the starting point for the second phase in
which a sequence of scalarizations of the objective function
vector gives rise to several new solutions. The method filters
the nondominated solutions and returns them. In the D-TPLS
variant, one solution for each objective is generated in the
first phase. Different implementations of these algorithms
were investigated in an experimental study presented in [27]
where the 2 and 3-opt local searches were examined within an
iterated local search framework. A 2-opt local search was pre-
sented for a special case of the MTSP, called TSP(1,2), in [17].
In this MTSP special case, the weights of the edges are values
in the set {(1,1),(1,2),(2,1),(2,2)}. Lust and Teghem [12]
presented a revision of meta-heuristic methods and proposed
a two-phase technique. First, their technique finds a good
approximation of supported efficient solutions by aggregating
the objectives and applying the LK heuristic presented in [4].
In the second phase, the solution constructed in the first phase
was submitted to the 2-opt local search proposed in [10]. The
convergence of the original PLS algorithm was investigated
in [18] where a technique that discretizes the objective space
dynamically was also proposed. This technique was used to
improve the convergence of the PLS algorithm.

Populational methods were also proposed to the MTSP,
some of them included local search techniques. Memetic
algorithms were proposed in [24] and [6]. The memetic al-
gorithm proposed in [24] is composed of a Random-Keys
Genetic Algorithm (RKGA) [28] and 2-opt local search. In
the local search phase, the objectives were aggregated by the
weighted Tchebycheff function and the weighted sum [29]. A
Pareto memetic algorithm with path-relinking and tabu search
based on the LK algorithm was proposed in [6]. In that al-
gorithm, a random weight vector was used to aggregate the
objectives. A Pareto memetic algorithm with path-relinking,
whose the main idea is to use a vector with random weight
at each iteration that is used to aggregate the objectives. A
tournament selection is made to choose two solutions, then
the Path Relinking, using the 2-opt, is applied and the two
best solutions found are used in the recombination, in the end,
the local search is applied. The local search is divided into
two stages, the first use the 2-opt local search ignoring the
common edges that are in both parent and son, and the sec-
ond is used a tabu search using the Lin Kernighan algorithm.
The NSGA-II [30] and the MOEA/D [31] were compared in
[23]. In that work, a 2-opt local search was included in the
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MOEA/D which was compared with the algorithm without the
local search. Multiple crossover and mutation operators with
a dynamic selection scheme were investigated in [21] for the
MTSP. A framework named multi-objective ant colony opti-
mization based on decomposition (MoACO/D) was proposed
in [25]. In that approach, the main problem was decomposed
in sub-problems, and the objectives were aggregated with
the Tchebycheff function. The ant colony was also divided
into sub-colonies, each of which optimized a sub-problem.
Finally, the Multi-objective Estimation of Distribution Algo-
rithm Based on Decomposition, MEDA/D, was proposed in
[26]. That algorithm joined the MOEA/D with estimation dis-
tribution algorithms. The idea was to decompose the problem
in sub-problems, each of them associated with a probabilistic
method. The work presented in [26] also investigated the
degree of conflict between the objectives of the MTSP and
proposed a method to generate instances for which the degree
of conflict can be measured.

3. Multi-objective Lin Kernighan
The LK heuristic, proposed by Lin and Kernighan [1], is
one of the most efficient methods to generate high-quality
solutions for the Euclidean TSP. Starting from a Hamiltonian
cycle, i.e., a solution for the TSP, the main idea is to iteratively
replace edges from the cycle by others that are not in the cycle.
A gain function is calculated at each edge replacement. The
procedure is repeated while the accumulated gain is positive
and the exchange of edges is possible.

Let T be a solution. Every iteration, the LK heuristic
searches for two sets of edges: X , edges in the cycle, and Y ,
edges not in the cycle, |X | = |Y | = r, such that, the replace-
ment of X by Y improves the cycle. The r value can vary from
iteration to iteration. There are several implementations of
the LK heuristic and each of them has its method to choose
the edges of X and Y . A revision of those methods was pre-
sented by [32]. An edge that belongs to X or Y must satisfy
constraints i–iv.

1. Sequential exchange: Edges xi and yi must share a
vertex, as well as edges yi and xi+1.

2. Viability: xi, xi+1, yi and yi+1 must be chosen so that a
cycle results from the inclusion of yi and yi+1 after the
removal of xi and xi+1.

3. Positive gain: Let gi = w(xi)−w(yi) be the gain com-
puted for the solution cost after exchanging edges xi
and yi, then Gi = g1 +g2 + ...+gi is the accumulated
gain on i iterations. Gi must be positive.

4. Disjoint sets: Sets X and Y must be disjoint, i.e., X ∩
Y = /0.

A detailed explanation of the LK heuristic was presented
by [3].

The multi-objective version of the LK algorithm, named
MLK, differs from the original algorithm on the gain function

and the output. To evaluate the solutions produced in the
MLK, the gain is evaluated for each objective. The algorithm
continues executing if the gain is positive for, at least, one ob-
jective. The output is a set of solutions mutually incomparable,
i.e., a nondominated set of solutions. The MLK pseudocode
is divided into two procedures presented in Algorithms 1 and
2.

Algorithm 1 Start(s,α ,p)

Require: Cycle s, the limit for the recursion depth α , the
number of objectives p

Ensure: A set of mutually incomparable solutions, PS
1: PS← /0
2: for each edge (u,v) ∈ s do
3: s′← s− (u,v)
4: Gi← 0 for i = 1, ..., p
5: R← /0
6: ImprovePath(s′,1,α, p,R,G,PS)
7: end for
8: return PS

Algorithm 1 receives a cycle (solution), s, the limit for
the recursion depth, α , and the number of objectives, p. The
PS set is initialized (step 1). Every iteration of the main
loop (steps 2-7), an edge is removed from s resulting in a
path s′ (step 3). The cumulative gain, Gi, of each objective
is initialized (step 4). The set of restricted vertices, R, is
initialized (step 5) and s′ is submitted to the improvement
procedure presented in Algorithm 2 (step 6). Algorithm 1
returns the PS set (step 8).

The improvement procedure has seven input parameters:
the Hamiltonian path, s′, the recursion depth, d, the limit for
the recursion depth, α , the number of objectives, p, the set
of restricted vertices, R, the cumulative gain, G and the PS
set. The path, s′, is improved satisfying i-iv. Recursive calls
are executed up to α times. R is a set of vertices which are
related to the iv constraint. If edge y = (u,v) is considered
for removal from s′, and u ∈ R, y cannot be removed since
an edge that started at u was withdrawn previously from the
original path, and y was inserted.

Three procedures are called in Algorithm 2: PS.insert,
invertPath and cycle. The PS.insert() function updates the PS
set with the solution passed as the second input parameter. If
the new solution is not dominated by any solution of PS, it
is added to PS. Solutions dominated by the new solution are
discarded. PS.insert() returns True if PS was updated, other-
wise it returns False. The invertPath(v,a) function, invert the
direction of the path from v to a. The procedure amounts to
remove edge (u,v) and insert edge (u,a) in s′. The cycle()
function adds an edge to s′, from the last to the first vertex of
s′ and returns a cycle.

If the recursion depth is less than α , Algorithm 2, searches
for the best edge exchange, i.e., the one that maximizes the
gain in any objective. Otherwise, the algorithm looks for
a path such that an accumulated gain in some objective is
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reached.
All edges exchanges are analyzed. If a new cycle created

from s′ is not dominated by s and not dominated by any
solution of PS, it is added to PS and a recursive call for the
ImprovePath procedure is made with the new cycle as the
input parameter.

Algorithm 2 ImprovePath(s′,d,α ,p,R, G, PS)

Require: Path, s′, recursion depth, d, limit for d, α , num-
ber of objectives, p, set of restricted vertices, R, list of
cummulative gains, G, set of nondominated solutions, PS

Ensure: Set of nondominated solutions, PS.
1: if d < α then
2: for every edge (u,v) ∈ s′ such that u /∈ R do
3: let a be the last vertex in s′

4: for i = 1, ..., p do
5: gi← wi

uv−wi
ua;G′i← Gi +gi

6: if G′i > 0 then
7: paux← s′; paux.invertPath(v,a)
8: if not (s′.cycle()≺ paux.cycle()) then
9: if PS.insert(PS, paux.cycle()) == True

then
10: ImprovePath(paux,d +1,α,R∪{u},G′)
11: end if
12: end if
13: end if
14: end for
15: end for
16: else
17: let a be the last vertex in s′

18: Find (u,v) which maximizes gi = w(u,v)− w(u,a)
among all objectives

19: if gi > 0 then
20: paux← s′; paux.invertPath(v,a);
21: PS.insert(PS, paux.cycle())
22: end if
23: end if

The MLK was implemented on the twoppls framework as
proposed by [7]. The twoppls is a two-phase algorithm. In
the first phase, the algorithm generates an approximation of
the supported efficient solutions, by solving weighted sum
single-objective problems. In the second phase, the solutions
provided by the first phase are submitted to the Pareto local
search (PLS).

For the sake of making this paper self-contained, we give
a brief introduction to the PLS which is a local search method
introduced by [9] to multi-objective problems. It is a method
based on Pareto dominance relations and does not require ob-
jectives aggregation or numerical parameters [7]. Algorithm
3 illustrates the PLS framework.

In the original proposal of the PLS by [9] the algorithm
started from a randomly generated tour, which was added to
the NS archive. Lust and Teghem [7] proposed to start from a
set of nondominated tours. The solutions are labeled as not

Algorithm 3 PLS(NS)

Require: Initial set of nondominated solutions, NS
Ensure: A set of nondominated solutions, NS

1: for each s ∈ NS do
2: explored(s)← f alse
3: end for
4: while ∃s ∈ NS such that explored(s) = f alse do
5: s← random not explored solution from(NS)
6: for each s′ ∈ Neighbor(s) do
7: if s′ ⊀ s then
8: explored(s′)← f alse
9: update(s′,NS)

10: end if
11: end for
12: explored(s)← true
13: end while
14: return NS

explored (step 2). A not explored solution is picked randomly
from NS (step 4) and its neighborhood is explored (steps 6-
11). Once a neighbour solution s′, which is nondominated in
relation to s, is found (step 7), s′ is labeled not explored (step
8) and added to NS. After the neighborhood of s is examined,
s is flagged as explored and the algorithm continues at step 4.
The algorithm stops when all solutions in NS are flagged as
explored.

The solutions of NS were first generated with the Nearest
Neighbor heuristics. Then, they were submitted to the LK lo-
cal search proposed by [4], called LKC, within a dichotomous
scheme (DS) as proposed by [33]. Since the DS was proposed
for bi-objective problems, an adaptation was necessary to deal
with three and four-objective problems. For problems with
more than two objectives, DS was executed for all combi-
nations of two objectives. For example, for three-objective
instances the DS was executed three times, each of them for a
combination of two objectives.

The MLK was implemented in the Neighbor( ) proce-
dure. We implemented two MLK versions as proposed by [9]
(PLSP) and by [10] (PLSA). The two PLS variants are called
di lk p and di lk a, respectively.

4. Computational Experiments
The di lk p and the di lk a were compared to the best version
of the Two-Phase Pareto Local Search proposed by [7], called
twoppls, which applied 2-opt local search within the PLSA in
the second phase. The three algorithms started from the same
set of nondominated solutions as explained in Section 3.

The algorithms were implemented in the C++11 program-
ming language, and the experiments were executed on a PC
with an Intel Core i5-2400 3.10GHz x 4 processor and 4 GB
of RAM, which ran Ubuntu 13.10 64 bits. Each algorithm
was executed 30 times independently for each instance. We
present the assessment methodology in section 4.1. The re-
sults for 2-objective instances are presented in section 4.2
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where, besides comparison among the results of the proposed
approaches, a comparison with state-of-the-art algorithms is
presented. Finally, results for 3 and 4-objective instances are
presented in section 4.3.

4.1 Methodology
The data set for the experiments consisted of 35 instances
with 2, 3 and 4 objectives, with n from 100 to 1000. The
2-objective instances used in the experiments are available at
〈https://eden.dei.uc.pt/∼paquete/tsp/〉 and 〈https://sites.google.
com/site/thibautlust/research/multiobjective-tsp〉.

The 2-objective instances were used in the experiments
reported in [34], [12], [7], [27] and [35]. The 3 and 4-
objective instances were created combining mono-objective
TSP instances available at the TSPLIB library [36]. Their
creation followed the same methodology used to create the
2-objective instances. For example, the 3-objective instance
named kroABC100 was created from the 3 mono-objective
instances named kroA100, kroB100 and kroC100.

Table 1 shows the instances of the computational experi-
ments. The columns show the instance’s name, the number of
objectives and the number of cities.

Two quality indicators were used to assess the approxima-
tion sets generated by each algorithm: the hypervolume (H)
[37] and the epsilon additive (ε+) [38]. The hypervolume in-
dicator is the only single set quality measure that is known to
be strictly monotonic about Pareto dominance [39]. Also, to
evaluate algorithms concerning different quality indicators is
a sound approach since different decision-maker preferences
can be considered [40]. However, we have to provide the
considered indicators are Pareto compliant. This is the case of
the hypervolume and the epsilon indicators as shown by [38].

A reference point and a reference set are necessary to
calculate the hypervolume and the epsilon additive indica-
tor, respectively. For 2-objective instances with 100 vertices,
the reference set was the Pareto front obtained by the exact
method proposed in [16] and published in 〈https://sites.google.
com/site/kflorios/motsp〉. The reference point was the nadir
point obtained from the Pareto front. For the 3 and 4-objective
instances and the 2-objective instances with more than 100
cities, the reference set was generated with the nondominated
points obtained from the union of the approximation sets gen-
erated by all algorithms. The reference point consisted of the
worst value of each objective of the points in the reference set.

The Kruskal-Wallis statistical test at a significance level
of 0.05 was applied to check differences in the results. If a
significant difference was observed, a Kruskal-Wallis test for
multiple comparisons was applied to verify which variants
differ from each other. The one with the best median was
considered the best approach.

As explained in Section3, the PLS algorithm stops when
all solutions in NS are labeled as explored. This was the
stopping criterion used for 2-objective instances up to 200
nodes. Due to the limitation of the computational resources,
we opted to establish a processing time limit for the remaining

instances. The limit was 3000s. The α value was empirically
set to 2.

4.2 Results for 2-objective instances
Table 2 shows the results for 2-objective instances. The first
column shows the names of the instances. There are three
columns related to each algorithm. They show the median
results for the H and the ε+ indicators, and the average pro-
cessing time in seconds.

The statistical test pointed out significant differences be-
tween each algorithmic version proposed in this paper and
the twoppls for the H and the ε+ results concerning the 2-
objective instances with 100 vertices. These differences are
illustrated in Figures 1-2 which show the boxplots of the H
indicator and Figures 5-6 which show the boxplots of the ε+
indicator for the 2-objective instances with 100 vertices. The
number on top of the box of Figures 1-4 is the value that
must be added to each number in the y-axis to get the real H
value. The closer to 1 the value of the H indicator, the better
is the result obtained by the algorithms. The smaller the ε+
indicator, the better.

The first part of Table 2 shows that the MLK variants
proposed in this study presented better results than the twoppls
for 2-objective instances up to 100 nodes. The statistical
tests indicated the better performance of the di lk p and the
di lk a than the twoppls for those instances concerning the
H indicator. An exception is the randEF100 instance for
which the algorithms were statistically equivalent. Figures
1 and 2 show that the differences between the boxplots of
the randAB100, randCD100 and randEF100 instances were
not so remarkable as for the remaining 2-objective instances
with 100 vertices. However, the statistical tests pointed out
significant differences for these instances too. In general,
the di lk p obtained the best results of the ε+ indicator for
2-objective instances up to 100 nodes. An exception is the
clusAB100 instances for which the di lk a presented the best
result. The statistical tests indicated significant differences for
all pairwise comparisons regarding the ε+ indicator.

The second part of Table 2 shows the 2-objective instances
with 150-1000 vertices. These results for the H and the ε+ in-
dicators are illustrated in Figures 4 and 8, respectively. The sta-
tistical tests indicated the better performance of the di lk p and
the di lk a than the twoppls for the kroAB150 and kroAB200
instances regarding the H indicator. For the remaining in-
stances shown in the second part of Table 2, the algorithms
finished their execution due to the processing time limit. Sig-
nificant differences between the methods on the H indicator
were not indicated by the statistical tests for the kroAB500
instance. The di lk a and the twoppls were statistically better
than the di lk p on the other instances for which significant
differences were not pointed out by the statistical tests for the
di lk a and the twoppls. Except for the kroAB150 instance,
the di lk a presented the best values of the ε+ indicator. The
statistical test indicated significant differences in the results
of the three algorithms tested concerning the ε+ indicator.
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Table 1. Instances
Instance #objective #cities Instance #objective #cities
kroAB100 2 100 kroABD100 3 100
kroAC100 2 100 kroACD100 3 100
kroAD100 2 100 kroBCD100 3 100
kroBC100 2 100 euclABC100 3 100
kroBD100 2 100 euclDEF100 3 100
kroCD100 2 100 randABC100 3 100
clusAB100 2 100 randDEF100 3 100
euclAB100 2 100 kroABCD100 4 100
euclCD100 2 100 euclABCD100 4 100
euclEF100 2 100 randABCD100 4 100
randAB100 2 100 kroAB150 2 150
randCD100 2 100 kroAB200 2 200
randEF100 2 100 kroAB300 2 300
mixdGG100 2 100 kroAB400 2 400
mixdHH100 2 100 kroAB500 2 500
mixdII100 2 100 kroAB750 2 750
kroABC100 3 100 kroAB1000 2 1000

Table 2. 2-objective instances
di lk a di lk p twoppls

H ε+ Time (s) H ε+ Time (s) H ε+ Time (s)
kroAB100 0.69271 206.967 74.722 0.69271 182.700 123.670 0.69263 246.133 28.768
kroAC100 0.69711 160.267 52.512 0.69711 146.000 98.632 0.69706 203.900 20.633
kroAD100 0.66269 163.300 47.292 0.66269 161.067 95.311 0.66263 238.133 16.974
kroBC100 0.67246 113.033 58.869 0.67246 110.567 109.723 0.67241 152.000 21.207
kroBD100 0.65971 170.367 54.922 0.65971 158.433 108.467 0.65966 198.533 19.868
kroCD100 0.67762 185.433 42.359 0.67762 176.100 71.148 0.67757 256.800 16.410
euclAB100 0.62394 199.533 32.330 0.62394 178.467 53.856 0.62385 266.267 11.471
euclCD100 0.62691 234.267 45.631 0.62691 222.267 86.319 0.62683 281.400 17.484
euclEF100 0.61571 226.300 51.082 0.61570 205.000 96.354 0.61563 247.567 18.160
randAB100 0.84881 629.600 10.583 0.84879 608.167 12.822 0.84876 704.633 2.187
randCD100 0.84969 578.033 10.232 0.84969 570.400 11.645 0.84965 599.500 2.166
randEF100 0.85514 554.200 11.465 0.85514 512.600 13.414 0.85507 595.367 2.471
mixdGG100 0.72392 405.467 20.779 0.72394 384.967 31.972 0.72382 440.400 5.753
mixdHH100 0.73265 341.967 25.812 0.73266 323.433 38.083 0.73258 402.433 6.663
mixdII100 0.73711 480.633 22.003 0.73712 475.867 34.531 0.73702 534.100 5.857
clusAB100 0.70700 152.833 84.718 0.70700 174.300 135.144 0.70693 272.033 30.326
kroAB150 0.72665 137.000 195.659 0.72665 131.500 501.826 0.72662 185.000 129.501
kroAB200 0.75794 134.500 709.272 0.75794 134.500 2207.165 0.75791 191.000 566.113
kroAB300 0.78864 246.000 3000.000 0.78773 2562.000 3000.000 0.78863 305.000 3000.000
kroAB400 0.80654 637.000 3000.000 0.80569 2908.500 3000.000 0.80652 893.000 3000.000
kroAB500 0.82396 1082.000 3000.000 0.82316 3277.000 3000.000 0.82396 1254.000 3000.000
kroAB750 0.85330 2529.000 3000.000 0.85275 4094.500 3000.000 0.85326 2931.000 3000.000
kroAB1000 0.86769 3186.000 3000.000 0.86725 4784.500 3000.000 0.86764 3612.500 3000.000

Table 2 shows that the twoppls presented the lowest av-
erage processing times for 2-objective instances up to 200
nodes, i.e., instances for which the algorithms did not stop
due to processing time limit. Runtime results are illustrated
in Figures 9-3. The stop criterion for those instances was to
have explored all solutions in NS. The proposed algorithms
were able to include more solutions in NS than the twoppls.
Thus, their processing times were also higher than the latter
algorithm.

4.3 Results for 3 and 4-objective instances
The results for the 3 and 4-objective instances are shown in
Table 3 and Figures 13-12. For the 3 and 4-objective instances,
the algorithms stopped due to the processing time limit, so we
omitted the processing times in Table 3.

The di lk p variant presented the best results of the H and
the ε+ indicators for the whole set of 3 and 4-objective in-
stances. Figures 13-12 show that the di lk p variant behaviour
was significantly different from the other two methods. The
statistical test confirmed this fact. The di lk a variant pre-
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Figure 1. Boxplot for the H indicator: 2-objective instances with 100 cities (part 1)

Table 3. 3 and 4-objective instances
di lk a di lk p twoppls

H ε+ H ε+ H ε+

kroABC100 0.33891 75872.000 0.47907 12657.000 0.33373 75578.000
kroABD100 0.33314 66939.000 0.45554 13982.000 0.32614 68208.000
kroACD100 0.32378 72832.500 0.46313 17258.500 0.31310 75125.000
kroBCD100 0.28959 74859.000 0.44978 14577.000 0.28940 72450.000
euclABC100 0.27847 65970.000 0.40272 9783.500 0.27434 66283.500
euclDEF100 0.27006 65125.000 0.38930 13938.000 0.26662 65468.000
randABC100 0.52029 108014.000 0.68768 14841.000 0.48704 115526.000
randDEF100 0.52879 103908.000 0.69054 14560.500 0.50563 108298.500
kroABCD100 0.09401 72409.000 0.18964 19559.000 0.09966 70882.000
euclABCD100 0.07112 59540.000 0.14506 13314.000 0.07245 62002.000
randABCD100 0.16953 112977.000 0.32910 29491.000 0.15236 117227.000

sented better results than the twoppls for 9 and 8 instances
from the 11 instances tested. The statistical test pointed out
significant differences for each pairwise comparison.

5. Conclusions
This study presented a new adaptation of the Lin and Kernighan
heuristic, called MLK, for the multi-objective TSP, and its
implementation within the PLS framework. We presented two
MLK variants which were compared to an algorithm from the
literature. The algorithms were applied to 34 instances from 2
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Figure 2. Boxplot for the H indicator: 2-objective instances with 100 cities (part 2)

to 4 objectives. The results showed that, in general, the MLK
variants obtained better results than the algorithm from the
literature.

In future works, we will investigate the MLK heuris-
tic within metaheuristic algorithms such as evolutionary ap-
proaches.
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Figure 5. Boxplot for the ε+ indicator: 2-objective instances with 100 cities (part 1)
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Figure 6. Boxplot for the ε+ indicator: 2-objective instances with 100 cities (part 2)
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Figure 7. Boxplot for the ε+ indicator: 2-objective instances with 150 to 1000 cities
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Figure 8. Boxplot for the ε+ indicator: 2-objective instances with 150 to 1000 cities
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Figure 9. Boxplot for the processing times: 2-objective instances with 100 cities (part 1)

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 1 • p.61/66 • 2018



A Multi-objective Version of the Lin-Kernighan Heuristic for the Traveling Salesman Problem

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

20

40

60

80

100

ti
m

e

euclEF100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

2

4

6

8

10

12

14

16

ti
m

e

randAB100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

2

4

6

8

10

12

14

ti
m

e

randCD100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

2

4

6

8

10

12

14

16

ti
m

e

randEF100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

5

10

15

20

25

30

35

40

ti
m

e

mixdGG100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

5

10

15

20

25

30

35

40

45

ti
m

e

mixdHH100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

5

10

15

20

25

30

35

40

ti
m

e

mixdII100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

20

40

60

80

100

120

140

160

ti
m

e

clusAB100

Figure 10. Boxplot for the processing times: 2-objective instances with 100 cities (part 2)
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Figure 11. H indicator boxplots for 4-objective instances

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

10000

20000

30000

40000

50000

60000

70000

80000

e
p
si

lo
n

kroABCD100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

10000

20000

30000

40000

50000

60000

70000

e
p
si

lo
n

euclABCD100

di_l
k_

a

di_l
k_

p

tw
op

pls

variant

20000

40000

60000

80000

100000

120000

e
p
si

lo
n

randABCD100

Figure 12. ε+ indicator boxplots for 4-objective instances
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STÜTZLE, T. Anytime pareto local search. European Journal
of Operational Research, v. 243, n. 2, p. 369–385, 2015.

[19] HANSEN, M. P. Use of substitute scalarizing functions
to guide a local search based heuristic: The case of motsp.
Journal of Heuristics, v. 6, n. 3, p. 419–431, 2000.
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Figure 13. H indicator boxplots for 3-objective instances
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Figure 14. ε+ indicator boxplots for 3-objective instances
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